
Interactive System Productivity Facility (ISPF)

Software Configuration and Library

Manager (SCLM) Project Manager’s and

Developer’s Guide

z/OS Version 1 Release 7.0

SC34-4817-04

���

Interactive System Productivity Facility (ISPF)

Software Configuration and Library

Manager (SCLM) Project Manager’s and

Developer’s Guide

z/OS Version 1 Release 7.0

SC34-4817-04

���

Note

Before using this document, read the general information under “Notices” on page 315.

Fifth Edition (September 2005)

This edition applies to ISPF for Version 1 Release 7.0 of the licensed program z/OS (program number 5694-A01)

and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for comments appears at the back of this publication. If the form has been

removed and you have ISPF-specific comments, address your comments to:

IBM Corporation

Department J87/D325

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Internet: comments@us.ibm.com

If you would like a reply, be sure to include your name and your address, telephone number, e-mail address, or

FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

The ISPF development team maintains a site on the World Wide Web. The URL for the site is:

http://www.ibm.com/software/awdtools/ispf/

© Copyright International Business Machines Corporation 1990, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/software/awdtools/ispf/

Contents

Preface vii

Who should use this document vii

What is in this document? vii

Using LookAt to look up message explanations . . viii

Using IBM Health Checker for z/OS ix

What’s in the z/OS V1R7.0 ISPF library? xi

The ISPF User Interface xiii

Some Terms You Should Know xiii

How to Navigate in ISPF Using the Action Bar

Interface xiv

Action Bars xiv

Command Nesting xvi

Action Bar Choices xvii

Point-and-Shoot Text Fields xviii

Function Keys xix

Selection Fields xx

How to Navigate in ISPF without Using Action Bars xx

Part 1. Project Manager’s Guide . . . 1

Chapter 1. Defining the Project

Environment 3

Overview of Project Manager Tasks 3

Project Definition Data 3

Generating a Project Environment 3

Step 1: Determine the Project’s Hierarchy 4

Primary Non-Key Group Testing Techniques . . . 6

Step 2: Identify the Types of Data to Support . . . 8

Step 3: Establish Authorization Codes 8

Using Authorization Codes to Control SCLM

Operations 9

Allowing Parallel Updates 11

Step 4: Allocate the PROJDEFS Data Sets 12

Step 5: Allocate the Project Partitioned Data Sets . . 13

Data Set Naming Conventions 13

Flexible Naming of Project Partitioned Data Sets 13

Number of Data Sets to Allocate 14

Versioning Partitioned Data Sets 17

Project Partitioned Data Sets 18

Space Considerations 18

Step 6: Allocate and Create the Control Data Sets . . 18

Create the Accounting Data Sets 19

Create the Export Data Sets 21

Create the Audit Control Data Sets 21

Step 7: Protect the Project Environment 23

PROJDEFS Data Sets 24

Project Partitioned Data Sets 24

Control Data Sets 24

Step 8: Create the Project Definition 24

Alternate Project Definitions 25

Create the Hierarchy Definition 26

Set the Project Control Options 27

Define the Language Definitions 34

Step 9: Assemble and Link the Project Definition . . 40

Assemble and Link Example 41

Project Manager Scenario 41

Prerequisites for Defining an SCLM Project . . . 41

Example Project Overview 42

Preparing the Example Project Hierarchy . . . 44

Understanding the Sample Project Definition . . 47

Preparing the Example Project Data 48

Chapter 2. User Exits 51

Specify the Change Code Verification Routine . . . 53

Change Code Verification Routine Example . . . 54

Specify the Build and Promote User Exit Routines 56

Build and Promote User Exit Routine

Requirements 56

Build and Promote User Exit Output Data Sets . . 58

Specify the Audit Version Delete User Exit Routine 59

Audit Version Delete User Exit Routine

Requirements 59

Specify the Delete User Exit Routine 60

Delete User Exit Routine Requirements 60

Delete User Exit Output Data Set 62

User Exit Routine Example 62

Chapter 3. Additional Project Manager

Tasks 67

Splitting Project VSAM Data Sets 67

Backing Up and Recovering the Project Environment 68

Synchronizing Accounting Data Sets 68

Maintaining Accounting Data Sets 69

Modifying the Delete from Group Dialog Interface 69

Implementing Package Backout 70

Chapter 4. Converting Projects to

SCLM 73

Prerequisites for Existing Hierarchies 73

Create Alternate Project Definitions 73

Create Architecture Definitions for the Project . . . 74

Register Existing PDS Members with SCLM . . . 74

Introducing Fixes to the Converted Hierarchy . . . 75

Chapter 5. Language Definition

Considerations 77

Using Multiple Translators in a Language Definition 78

Invoking User-Defined Parsers 81

Defining Information Tracked by SCLM 81

Writing the Parser 81

Telling SCLM How to Invoke Your Parser . . . 82

Processing Conditionally Saved Components . . . 92

Example of Processing Conditionally Saved

Components 92

Setting Up the Project Definition 93

Specifying the Locations of Included Members . . 94

© Copyright IBM Corp. 1990, 2005 iii

 | |

Example 95

Dynamic Include Tracking 99

Input List Translators 100

Configuring the Input List Translators 100

Defining a New Language to SCLM 101

Using DDnames and DDname Substitution Lists 101

Showing Users How to Write CC Architecture

Definitions 111

Convert Your JCL Decks to Architecture

Definitions 112

Defining a Preprocessor to SCLM 113

Passing the Source to the Compiler 115

Converting JCL to SCLM Language Definitions . . 118

Before You Begin 118

Capabilities and Restrictions 118

Converting JCL Cards to SCLM Macro

Statements 120

Chapter 6. Using SCLM and Tivoli

Information Management for z/OS . . 129

Required Environment 129

Description of User Program Interaction 129

Input Parameters 129

Option List Format 129

Information Management Parameters 130

SCLM Parameters 131

Program Flow 131

Error Processing 131

Example 132

Chapter 7. Understanding and Using

the Customizable Parsers 133

The Parsers as Shipped 133

Sample Language Definitions 133

Parser Error Listings 134

Modifying the Parsers 134

Adding More Elaborate Parsing Error Messages 134

Appending to the Error Listing File 136

Compiling the Parsers 137

Part 2. Developer’s Guide 139

Chapter 8. The Software Configuration

and Library Manager 141

SCLM Project Environment 141

User Application Data 141

Chapter 9. Using SCLM Functions . . 145

Name Retrieval with the NRETRIEV command . . 145

SCLM Considerations for NRETRIEV 146

SCLM Main Menu 147

SCLM Main Menu Options 148

SCLM Main Menu Action Bar Choices: 148

SCLM Main Menu Panel Fields: 149

View (Option 1) 149

SCLM View - Entry Panel Action Bar Choices 150

Edit (Option 2) 152

SCLM Edit - Entry Panel Fields 153

Comparison of SCLM and ISPF Editors 154

SCLM Command Macros 155

Utilities (Option 3) 159

Library Utility 160

Migration Utility 176

Database Contents Utility 178

Architecture Report Utility 188

Export Utility 195

Import Utility 199

Audit and Version Utility 203

Delete from Group Utility 214

Package Backout Utility 218

Unit of Work Utility 225

SCLM Explorer 234

Build (Option 4) 236

Build Report Example 240

Promote (Option 5) 242

Promote Report 245

Processing Errors 248

Command (Option 6) 249

Easy Cmds (Option 6A) 249

Batch Processing 249

Output Disposition 250

Sample Project Utility (Option 7) 251

Chapter 10. Development Scenario 253

Understanding the Hierarchy and the SCLM Main

Menu 253

Understanding the Architecture Definition 254

Sample SCLM Development Cycle 256

Using the SCLM Editor 258

Understanding the Library Utility 259

Using Build 260

Editing the Member to Correct Errors 261

Attempting to Promote a Member before

Performing a Build 261

Rebuilding the Changed Member 261

Using the Database Contents Utility 262

Promoting a Member Successfully 263

Drawing Down a Promoted Member 264

Performing Project Housekeeping Activities . . . 264

Chapter 11. Architecture Definition 265

Architecture Members 265

Kinds of Architecture Members 265

Defining Compiler Processed Components . . . 266

Compilation Control Architecture Members . . 266

Specifying Source Members 267

Defining Link-Edit Processed Components . . . 267

SCLM Build and Control Timestamps 268

Defining Application and Subapplication

Components 269

Generic Architecture Members 269

Build and Promote by Change Code 270

Architecture Statements 272

Statement Format 272

Statement Uses 273

Sample Application Using Architecture Definitions 279

Ensuring Synchronization with Architecture

Definitions 282

Build Outputs 284

iv z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

 | |

Multiple Build Outputs 284

Sequential Build Outputs 284

Default Output Member Names 284

Languages of Output Members 285

Chapter 12. Managing Complex

Projects 287

Impact Assessment Techniques 287

Dependency Processing 287

Propagating Applications to Other Databases . . . 288

Part 3. DB2 and Workstation

Support 291

Chapter 13. SCLM Support for DB2,

General Information 293

Restrictions 293

Information For The Project Manager 294

Generating a Project Environment 294

Information For The Developer 296

Developer Recommendations 296

Getting Started 296

Create DB2 CLIST 296

Chapter 14. SCLM Support for

Workstation Builds 299

Requirements 299

Overview of Workstation Build 299

Information For The Project Manager 301

Project Setup Considerations 301

Information For The Developer 304

Migrating Applications into SCLM 304

Architecture Definition Members for

Workstation Applications 305

Specifying Options 305

Including Outputs From Other Build Steps . . 306

Running Multiple Workstation Commands . . 306

Sample Language Definition 307

Workstation Setup 310

Directories and File Names 310

Multiple Builds on One Workstation 311

Appendix. Accessibility 313

Using assistive technologies 313

Keyboard navigation of the user interface 313

z/OS information 313

Notices 315

Programming Interface Information 316

Trademarks 317

Glossary of SCLM Terms 319

Index 323

Contents v

vi z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Preface

This document provides reference and usage information, along with conceptual

and functional descriptions of the Software Configuration and Library Manager

(SCLM). This document also contains step-by-step information for setting up and

maintaining an SCLM project environment. It describes how to establish and

monitor a database and explains the library functions.

Who should use this document

This document is for application developers whose projects are controlled by

SCLM. This document is also for project managers who use SCLM to manage the

development process.

What is in this document?

This manual assumes that you are familiar with the operation of ISPF in the z/OS

environment.

Part 1 of this document is the Project Manager’s Guide:

 Chapter 1, “Defining the Project Environment,” describes how to generate a

project definition. It explains the steps that enable you to create the database

that best meets the needs of your project. The chapter includes step-by-step

instructions for setting up the SCLM sample project included with the ISPF

product. After completing the steps described in this chapter, you can

experiment with basic SCLM operations using the sample project hierarchy.

Chapter 2, “User Exits,” describes the customization of user exit points so that

SCLM can be integrated with other products. The chapter lists the available exit

routines and describes how you can customize these for your users.

Chapter 3, “Additional Project Manager Tasks,” describes additional tasks that

project managers perform to maintain SCLM projects. This chapter discusses

backing up and recovering a project database, using authorization codes to

control SCLM operations, developing and maintaining projects concurrently,

and implementing verification and exit routines for SCLM projects.

Chapter 4, “Converting Projects to SCLM,” describes the steps required to

convert existing ISPF software development projects to SCLM.

Chapter 5, “Language Definition Considerations” describes setup operations

you must perform to create a language definition for SCLM to use. The

subsection Defining a New Language to SCLM describes the control structures

used to manage SCLM functions and illustrates how to define new languages.

It also contains information on converting JCL decks to language definitions.

Chapter 6, “Using SCLM and Tivoli Information Management for z/OS,”

illustrates the interaction between SCLM and Information Manager through the

use of a sample program.

Chapter 7, “Understanding and Using the Customizable Parsers,” describes the

REXX parsers supplied with SCLM and provides examples of how to customize

them.

Part 2 of this document is the Developer’s Guide:

© Copyright IBM Corp. 1990, 2005 vii

Chapter 8, “The Software Configuration and Library Manager,” provides

information on the SCLM project database and the terminology used. The

chapter describes the library structure and naming conventions used when you

define and maintain SCLM projects.

Chapter 9, “Using SCLM Functions,” describes how to use the ISPF dialog

interface, select SCLM functions to retrieve or process certain information, and

generate reports on the information stored in project databases. It also describes

information stored in accounting, cross-reference, and intermediate records for

members in the project databases.

Chapter 10, “Development Scenario,” is a programmer scenario that describes

the tasks typically performed by SCLM users. This chapter provides

step-by-step instructions on how to use the basic SCLM functions to control

development projects.

Chapter 11, “Architecture Definition,” describes architecture configuration and

dependency control statements and their uses. It provides examples of each

kind of architecture member and describes the special command statements that

the architecture members require. It also provides an example of the format of

each statement and lists any restrictions.

Chapter 12, “Managing Complex Projects,” describes advanced topics that aid

in managing complex configurations.

Chapter 13, “SCLM Support for DB2, General Information,” describes how to

configure SCLM and DB2 to work together.

Chapter 14, “SCLM Support for Workstation Builds,” describes how to set up

and use SCLM to do builds on the workstation.

The Glossary of SCLM Terms and the Index sections are available for your

reference.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the

IBM® messages you encounter, as well as for some system abends and codes.

Using LookAt to find information is faster than a conventional search because in

most cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS® elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E

command line (for example: TSO/E prompt, ISPF, or z/OS UNIX® System

Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from

the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

viii z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

with a handheld device that has wireless access and an Internet browser (for

example: Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or

Opera for Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in

the LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide

checks that take advantage of the IBM Health Checker for z/OS framework. This

book refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS and Sysplex: User’s Guide. z/OS V1R4, V1R5, and

V1R6 users can obtain the IBM Health Checker for z/OS from the z/OS

Downloads page at

http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Preface ix

http://www.ibm.com/servers/eserver/zseries/zos/downloads/

x z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

What’s in the z/OS V1R7.0 ISPF library?

You can order the ISPF books using the numbers provided below.

 Title Order Number

z/OS ISPF Dialog Developer’s Guide and Reference SC34-4821–04

z/OS ISPF Dialog Tag Language Guide and Reference SC34-4824–04

z/OS ISPF Edit and Edit Macros SC34-4820–04

z/OS ISPF Messages and Codes SC34-4815–04

z/OS ISPF Planning and Customizing GC34-4814–04

z/OS ISPF Reference Summary SC34-4816–04

z/OS ISPF Software Configuration and Library Manager Project Manager’s

and Developer’s Guide

SC34-4817–04

z/OS ISPF Software Configuration and Library Manager Reference SC34-4818–04

z/OS ISPF Services Guide SC34-4819–04

z/OS ISPF User’s Guide Vol I SC34-4822–04

z/OS ISPF User’s Guide Vol II SC34-4823–04

© Copyright IBM Corp. 1990, 2005 xi

xii z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The ISPF User Interface

ISPF provides an action bar-driven interface that exploits many of the usability

features of Common User Access® (CUA®) interfaces. Refer to Object-Oriented

Interface Design: IBM Common User Access Guidelines for additional information.

These action bars give you another way to move around in ISPF, as well as the

ability to nest commands. Command nesting allows you to suspend an activity

while you perform a new one rather than having to end a function to perform

another function.

This chapter primarily explains the action bar-driven interface and the use of

ISPF’s graphical user interface (GUI).

Some Terms You Should Know

The following terms are used in this document:

action bar

The area at the top of an ISPF panel that contains choices that give you

access to actions available on that panel. When you select an action bar

choice, ISPF displays a pull-down menu.

command procedure

A CLIST or REXX EXEC

data set

A sequential or partitioned data set

function key

In previous releases of ISPF, a programmed function (PF) key. This is a

change in terminology only.

library

A partitioned data set

menu A selection panel

mnemonics

Action bar choices can be defined with a underscored letter in the action

bar choice text. In host mode you can access the action bar choice with the

ACTIONS command and parameter x, where x is the underscored letter in

the action bar choice text. In GUI mode you can use a hot key to access a

choice on the action bar; that is, you can press the ALT key in combination

with the letter that is underscored in the action bar choice text.

modal pop-up window

A type of window that requires you to interact with the panel in the

pop-up before continuing. This includes canceling the window or

supplying information requested.

modeless pop-up window

A type of window that allows you to interact with the dialog that

produced the pop-up before interacting with the pop-up itself.

point-and-shoot text

Text on a screen that is cursor-sensitive. See “Point-and-Shoot Text Fields”

on page xviii for more information.

© Copyright IBM Corp. 1990, 2005 xiii

pop-up window

A bordered temporary window that displays over another panel.

pull-down menu

A list of numbered choices extending from the selection you made on the

action bar. The action bar selection is highlighted; for example, Utilities in

Figure 1 on page xv appears highlighted on your screen. You can select an

action either by typing in its number and pressing Enter or by selecting the

action with your cursor. ISPF displays the requested panel. If your choice

contains an ellipsis (...), ISPF displays a pop-up window. When you exit this

panel or pop-up, ISPF closes the pull-down and returns you to the panel

from which you made the initial action bar selection.

push button

A rectangle with text inside. Push buttons are used in windows for actions

that occur immediately when the push button is selected (available only

when you are running ISPF in GUI mode).

select In conjunction with point-and-shoot text fields and action bar choices, this

means moving the cursor to a field and simulating Enter.

terminal

Any of the supported display devices

How to Navigate in ISPF Using the Action Bar Interface

Most ISPF panels have action bars at the top; the choices appear on the screen in

white by default. Many panels also have point-and-shoot text fields, which appear

in turquoise by default. The panel shown in Figure 3 on page xvi has both.

Action Bars

Action bars give you another way to move through ISPF. If the cursor is located

somewhere on the panel, there are several ways to move it to the action bar:

v Use the cursor movement keys to manually place the cursor on an action bar

choice.

v Type ACTIONS on the command line and press Enter to move the cursor to the

first action bar choice.

v Press F10 (Actions) or the Home key to move the cursor to the first action bar

choice.

If mnemonics are defined for action bar choices, you can:

– In 3270 mode, on the command line, type ACTIONS and the mnemonic letter

that corresponds to an underscored letter in the action bar choice text. This

results in the display of the pull-down menu for that action bar choice.

– In 3270 mode, on the command line enter the mnemonic letter that

corresponds to an underscored letter in the action bar choice text, and press

the function key assigned to the ACTIONS command. This results in the

display of the pull-down menu for that action bar choice.

– In GUI mode, you can use a hot key to access a choice on an action bar or on

a pull-down menu; that is, you can press the ALT key in combination with

the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are

running in GUI mode, use the right and left cursor keys.

The ISPF User Interface

xiv z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Notes:

1. ISPF does not provide a mouse emulator program. This document uses select in

conjunction with point-and-shoot text fields and action bar choices to mean

moving the cursor to a field and simulating Enter.

2. Some users program their mouse emulators as follows:

v Mouse button 1 – position the cursor to the pointer and simulate Enter

v Mouse button 2 – simulate F12 (Cancel).
3. If you want the Home key to position the cursor at the first input field on an

ISPF panel, type SETTINGS on any command line and press Enter to display the

ISPF Settings panel. Deselect the “Tab to action bar choices” option.

4. If you are running in GUI mode, the Home key takes you to the beginning of

the current field.

When you select one of the choices on the action bar, ISPF displays a pull-down

menu. Figure 1 shows the pull-down menu displayed when you select Options on

the ISPF Primary Option Menu action bar.

 To select a choice from the Options pull-down menu, type its number in the entry

field (underlined) and press Enter or select the choice. To cancel a pull-down menu

without making a selection, press F12 (Cancel). For example, if you select choice 6,

ISPF displays the Dialog Test Application ID pop-up, as shown in Figure 2 on page

xvi.

Note: If you entered a command on the command line prior to selecting an action

bar choice, the command is processed, and the pull-down menu is never

displayed. The CANCEL, END, and RETURN commands are exceptions.

These three commands are not processed and the cursor is repositioned to

the first input field in the panel body. If there is no input field, the cursor is

repositioned under the action bar area. If you are running in GUI mode and

 Menu Utilities Compilers �1�Options Status Help

 ─────────────────────────── ┌──────────────────────────────┐ ─────────────────

 │ 1. General Settings │

 │ 2. CUA Attributes... │

 0 Settings Terminal a │ 3. Keylists... │ ID . : MBURNS

 1 View Display so │ 4. Point-and-Shoot... │ . . . : 11:19

 2 Edit Create or │ 5. Colors... │ inal. : 3278

 3 Utilities Perform ut │ 6. Dialog Test appl ID... │ en. . : 1

 4 Foreground Interactiv └──────────────────────────────┘ uage. : ENGLISH

 5 Batch Submit job for language processing Appl ID . : ISR

 6 Command Enter TSO or Workstation commands TSO logon : ISPF

 7 Dialog Test Perform dialog testing TSO prefix: MBURNS

 9 IBM Products IBM program development products System ID : ISD1

 10 SCLM SW Configuration Library Manager MVS acct. : IBMGSA

 11 Workplace ISPF Object/Action Workplace Release . : ISPF 5.5

 Enter X to Terminate using Log/List defaults

 Option ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

�1� The selected action bar choice is highlighted.

Figure 1. Panel with an Action Bar Pull-Down Menu

The ISPF User Interface

The ISPF User Interface xv

select an action bar choice, any existing command on the command line is

ignored.

Command Nesting

You can use the action bars to suspend an activity while you perform a new one.

 Menu Utilities Compilers Options Status Help

 ─ ┌────────────────────────────────────┐ ─────────────────────────────────────

 │ Dialog Test Application ID │ ption Menu

 │ │

 0 │ Change the application ID for │ ters User ID . : MBURNS

 1 │ Dialog Test. │ istings Time. . . : 11:19

 2 │ │ data Terminal. : 3278

 3 │ Application ID . . ISR │ s Screen. . : 1

 4 │ │ cessing Language. : ENGLISH

 5 │ │ processing Appl ID . : ISR

 6 │ Command ===> │ commands TSO logon : ISPF

 7 │ F1=Help F2=Split F3=Exit │ TSO prefix: MBURNS

 9 │ F9=Swap F12=Cancel │ products System ID : ISD1

 1 └────────────────────────────────────┘ Manager MVS acct. : IBMGSA

 11 Workplace ISPF Object/Action Workplace Release . : ISPF 5.5

 Enter X to Terminate using Log/List defaults

 Option ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 2. Pop-Up Selected from an Action Bar Pull-Down

 �1� Menu Utilities Compilers Options Status Help

 ──

 ISPF Primary Option Menu

 �2� �3�

 0 Settings Terminal and user parameters User ID . : MBURNS

 1 View Display source data or listings Time. . . : 12:29

 2 Edit Create or change source data Terminal. : 3278

 3 Utilities Perform utility functions Screen. . : 1

 4 Foreground Interactive language processing Language. : ENGLISH

 5 Batch Submit job for language processing Appl ID . : ISR

 6 Command Enter TSO or Workstation commands TSO logon : ISPF

 7 Dialog Test Perform dialog testing TSO prefix: MBURNS

 9 IBM Products IBM program development products System ID : ISD1

 10 SCLM SW Configuration Library Manager MVS acct. : IBMGSA

 11 Workplace ISPF Object/Action Workplace Release . : ISPF 5.5

 Enter X to Terminate using Log/List defaults

 Option ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

�1� Action bar. You can select any of the action bar choices and display a pull-down.

�2� Options. The fields in this column are point-and-shoot text fields.

�3� Dynamic status area. You can specify what you want to be displayed in this area.

Figure 3. Panel with an Action Bar and Point-and-Shoot Fields

The ISPF User Interface

xvi z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

For example, if you are editing a data set and want to allocate another data set,

select the Data set choice from the Utilities pull-down on the Edit panel action bar.

ISPF suspends your edit session and displays the Data Set Utility panel. When you

have allocated the new data set and ended the function, ISPF returns you directly

to your edit session.

By contrast, if you used the jump function (=3.2), ISPF would end your edit

session before displaying the Data Set Utility.

Action Bar Choices

The action bar choices available vary from panel to panel, as do the choices

available from their pull-downs. However, Menu and Utilities are basic action bar

choices, and the choices on their pull-down menus are always the same.

Menu Action Bar Choice

The following choices are available from the Menu pull-down:

Settings Displays the ISPF Settings panel

View Displays the View Entry panel

Edit Displays the Edit Entry panel

ISPF Command Shell Displays the ISPF Command Shell panel

Dialog Test... Displays the Dialog Test Primary Option panel

Other IBM Products... Displays the Additional IBM Program

Development Products panel

SCLM Displays the SCLM Main Menu

ISPF Workplace Displays the Workplace entry panel

Status Area... Displays the ISPF Status panel

Exit Exits ISPF.

Note: If a choice displays in blue (the default) with an asterisk as the first digit of

the selection number (if you are running in GUI mode, the choice will be

grayed), the choice is unavailable for one of the following reasons:

v Recursive entry is not permitted here

v The choice is the current state; for example, RefMode is currently set to

Retrieve in Figure 4 on page xviii.

The ISPF User Interface

The ISPF User Interface xvii

Utilities Action Bar Choice

The following choices are available from the Utilities pull-down:

Library Displays the Library Utility panel

Data Set Displays the Data Set Utility panel

Move/Copy Displays the Move/Copy Utility panel

Data Set List Displays the Data Set List Options panel

Reset Statistics Displays the Reset ISPF Statistics panel

Hardcopy Displays the Hardcopy Utility panel

Download... Displays the panel that enables you to download

workstation clients and other files from the host.

Outlist Displays the Outlist Utility panel

Commands... Displays the Command Table Utility panel

Reserved Reserved for future use by ISPF; an unavailable

choice

Format Displays the Format Specification panel

SuperC Displays the SuperC Utility panel

SuperCE Displays the SuperCE Utility panel

Search-for Displays the Search-For Utility panel.

Search-forE Displays the Search-ForE Utility panel.

Point-and-Shoot Text Fields

Point-and-shoot text fields are cursor-sensitive; if you select a field, the action

described in that field is performed. For example, if you select Option 0, Settings,

in Figure 3 on page xvi, ISPF displays the ISPF Settings panel.

 Menu RefList RefMode Utilities Workstation Help

 ────────────── ┌─────────────────────┐ ───────────────────────────────────────

 │ 1 1. List Execute │ ry Panel

 │ *. List Retrieve │ More: +

 ISPF Library: └─────────────────────┘

 Project . . . PDFTDEV

 Group STG

 Type GML

 Member . . . (Blank or pattern for member selection list)

 Other Partitioned, Sequential or VSAM Data Set:

 Data Set Name . . .

 Volume Serial . . . (If not cataloged)

 Workstation File:

 File Name

 Options

 Initial Macro / Confirm Cancel/Move/Replace

 Profile Name Browse Mode

 Format Name View on Workstation

 Data Set Password . . / Warn on First Data Change

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 4. An Unavailable Choice on a Pull-Down

The ISPF User Interface

xviii z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note: If you have entered a command on the command line, this command is

processed before any point-and-shoot command unless you are running in

GUI mode.

The cursor-sensitive portion of a field often extends past the field name. Until you

are familiar with this new feature of ISPF, you might want to display these fields

in reverse video (use the PSCOLOR command to set Highlight to REVERSE).

Note: You can use the Tab key to position the cursor to point-and-shoot fields by

selecting the “Tab to point-and-shoot fields” option on the ISPF Settings

panel (Option 0).

Function Keys

ISPF uses CUA-compliant definitions for function keys F1–F12 (except inside the

Edit function). F13–F24 are the same as in ISPF Version 3. By default you see the

CUA definitions because your “Primary range” field is set to 1 (Lower - 1 to 12).

To use non-CUA-compliant keys, select the “Tailor function key display” choice

from the Function keys pull-down on the ISPF Settings (option 0) panel action bar.

On the Tailor Function Key Definition Display panel, specify 2 (Upper - 13 to 24)

in the “Primary range” field.

The following function keys help you navigate in ISPF:

F1 Help. Displays Help information. If you press F1 (and it is set to Help)

after ISPF displays a short message, a long message displays in a pop-up

window.

F2 Split. Divides the screen into two logical screens separated by a horizontal

line or changes the location of the horizontal line.

Note: If you are running in GUI mode, each logical screen displays in a

separate window.

F3 Exit (from a pull-down). Exits the panel underneath a pull-down.

F3 End. Ends the current function.

F7 Backward. Moves the screen up the scroll amount.

F8 Forward. Moves the screen down the scroll amount.

F9 Swap. Moves the cursor to where it was previously positioned on the

other logical screen of a split-screen pair.

F10 Actions. Moves the cursor to the action bar. If you press F10 a second time,

the cursor moves to the command line.

F12 Cancel. Issues the Cancel command. Use this command to remove a

pull-down menu if you do not want to make a selection. F12 also moves

the cursor from the action bar to the Option ==> field on the ISPF Primary

Option Menu. See z/OS ISPF Dialog Developer’s Guide and Reference for

cursor-positioning rules.

F16 Return. Returns you to the ISPF Primary Option Menu or to the display

from which you entered a nested dialog. RETURN is an ISPF system

command.

The ISPF User Interface

The ISPF User Interface xix

Selection Fields

z/OS V1R7.0 ISPF uses the following CUA-compliant conventions for selection

fields:

A single period (.)

Member lists that use a single period in the selection field recognize only a

single selection. For example, within the Edit function you see this on your

screen:

│EDIT USER1.PRIVATE.TEST ROW 00001 of 00002 │

│ Name VV MM Created Changed Size Init Mod ID │

│ . MEM1 01.00 94/05/12 94/07/22 40 0 0 USER1 │

│ . MEM2 01.00 94/05/12 94/07/22 30 0 0 KEENE │

You can select only one member to edit.

A single underscore (_)

Selection fields marked by a single underscore prompt you to use a slash

(/) to select the choice. You may use any nonblank character. For example,

the “Panel display CUA mode” field on the ISPF Settings panel has a

single underscore for the selection field:

Options

 Enter "/" to select option

 _ Command line at bottom

 _ Panel display CUA mode

 _ Long message in pop-up

Note: In GUI mode, this type of selection field displays as a check box;

that is, a square box with associated text that represents a choice.

When you select a choice, the check box is filled to indicate that the

choice is in effect. You can clear the check box by selecting the

choice again.

An underscored field (____)

Member lists or text fields that use underscores in the selection field

recognize multiple selections. For example, from the Display Data Set List

Option panel, you may select multiple members for print, rename, delete,

edit, browse, or view processing.

How to Navigate in ISPF without Using Action Bars

If you use a non-programmable terminal to access z/OS V1R7.0 ISPF and you do

not want to take advantage of the command nesting function, you can make

selections the same way you always have: by typing in a selection number and

pressing Enter.

The ISPF User Interface

xx z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 1. Project Manager’s Guide

Chapter 1. Defining the Project Environment . . . 3

Overview of Project Manager Tasks 3

Project Definition Data 3

Generating a Project Environment 3

Step 1: Determine the Project’s Hierarchy 4

Primary Non-Key Group Testing Techniques . . . 6

Step 2: Identify the Types of Data to Support . . . 8

Step 3: Establish Authorization Codes 8

Using Authorization Codes to Control SCLM

Operations 9

Allowing Parallel Updates 11

Step 4: Allocate the PROJDEFS Data Sets 12

Step 5: Allocate the Project Partitioned Data Sets . . 13

Data Set Naming Conventions 13

Flexible Naming of Project Partitioned Data Sets 13

Number of Data Sets to Allocate 14

Determining When Data Set Allocation Is

Necessary 14

How SCLM Functions Use Data Sets 15

Manipulating VSAM Records for Unallocated

Data Sets 15

Examples of Hierarchies with Unallocated

Data Sets 16

Versioning Partitioned Data Sets 17

Project Partitioned Data Sets 18

Space Considerations 18

Step 6: Allocate and Create the Control Data Sets . . 18

Create the Accounting Data Sets 19

Space Considerations for the Accounting Data

Sets 21

Create the Export Data Sets 21

Create the Audit Control Data Sets 21

Space Considerations for the Audit Data Sets 23

Step 7: Protect the Project Environment 23

PROJDEFS Data Sets 24

Project Partitioned Data Sets 24

Control Data Sets 24

Step 8: Create the Project Definition 24

Alternate Project Definitions 25

Create the Hierarchy Definition 26

Specify the Project Name with FLMABEG . . 27

Define Authorization Groups with FLMAGRP 27

Define Types with FLMTYPE 27

Define Groups with FLMGROUP 27

End the Definition with FLMAEND 27

Set the Project Control Options 27

Primary Accounting Data Set Specification . . 28

Secondary Accounting Data Set Specification 28

Export Accounting Data Set Specification . . 28

Audit Control Data Sets Specification 29

VSAM Record Level Sharing (RLS) 29

Versioning Partitioned Data Sets Specification 29

Project Partitioned Data Set Naming

Conventions 29

Maximum Lines Per Page 29

Number of Versions to Keep 29

Translator Option Override 30

SCLM Temporary Data Set Allocations . . . 30

User Exit Routine Specification 31

Example Project Definition 31

Define the Language Definitions 34

Modifying Example Language Definitions . . 36

Step 9: Assemble and Link the Project Definition . . 40

Assemble and Link Example 41

Project Manager Scenario 41

Prerequisites for Defining an SCLM Project . . . 41

Example Project Overview 42

Preparing the Example Project Hierarchy . . . 44

Understanding the Sample Project Definition . . 47

Preparing the Example Project Data 48

Chapter 2. User Exits 51

Specify the Change Code Verification Routine . . . 53

Change Code Verification Routine Example . . . 54

Specify the Build and Promote User Exit Routines 56

Build and Promote User Exit Routine

Requirements 56

Build and Promote User Exit Output Data Sets . . 58

Specify the Audit Version Delete User Exit Routine 59

Audit Version Delete User Exit Routine

Requirements 59

Specify the Delete User Exit Routine 60

Delete User Exit Routine Requirements 60

Delete User Exit Output Data Set 62

User Exit Routine Example 62

Chapter 3. Additional Project Manager Tasks . . 67

Splitting Project VSAM Data Sets 67

Backing Up and Recovering the Project Environment 68

Synchronizing Accounting Data Sets 68

Maintaining Accounting Data Sets 69

Modifying the Delete from Group Dialog Interface 69

Implementing Package Backout 70

Chapter 4. Converting Projects to SCLM 73

Prerequisites for Existing Hierarchies 73

Create Alternate Project Definitions 73

Create Architecture Definitions for the Project . . . 74

Register Existing PDS Members with SCLM . . . 74

Introducing Fixes to the Converted Hierarchy . . . 75

Chapter 5. Language Definition Considerations 77

Using Multiple Translators in a Language Definition 78

Invoking User-Defined Parsers 81

Defining Information Tracked by SCLM 81

Writing the Parser 81

Telling SCLM How to Invoke Your Parser . . . 82

Processing Conditionally Saved Components . . . 92

Example of Processing Conditionally Saved

Components 92

Setting Up the Project Definition 93

© Copyright IBM Corp. 1990, 2005 1

 | |

Specifying the Locations of Included Members . . 94

Example 95

Dynamic Include Tracking 99

Input List Translators 100

Configuring the Input List Translators 100

Defining a New Language to SCLM 101

Using DDnames and DDname Substitution Lists 101

Compiler Options 102

Defining a New Language: Step-by-Step . . 102

Showing Users How to Write CC Architecture

Definitions 111

Convert Your JCL Decks to Architecture

Definitions 112

Defining a Preprocessor to SCLM 113

Passing the Source to the Compiler 115

Converting JCL to SCLM Language Definitions . . 118

Before You Begin 118

Capabilities and Restrictions 118

Converting JCL Cards to SCLM Macro

Statements 120

Executing Programs 120

Conditional Execution 121

Sample JCL Conversion 121

Chapter 6. Using SCLM and Tivoli Information

Management for z/OS 129

Required Environment 129

Description of User Program Interaction 129

Input Parameters 129

Option List Format 129

Information Management Parameters 130

SCLM Parameters 131

Program Flow 131

Error Processing 131

Example 132

Chapter 7. Understanding and Using the

Customizable Parsers 133

The Parsers as Shipped 133

Sample Language Definitions 133

Parser Error Listings 134

Modifying the Parsers 134

Adding More Elaborate Parsing Error Messages 134

Appending to the Error Listing File 136

Compiling the Parsers 137

2 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 1. Defining the Project Environment

This chapter describes the tasks performed by project managers to set up and

maintain an SCLM project environment. The required steps are described in

complete detail, with examples and recommended procedures where applicable.

After you understand the steps discussed in the first part of this chapter, you can

experiment with installing an actual project by completing the steps in “Project

Manager Scenario” on page 41. The data sets used in the scenario are available as

part of the ISPF product. You can use ISPF Option 10.7 to create a small sample

project.

If SCLM does not appear on any of your menu panels or on the Menu pull-down,

enter TSO SCLM on any ISPF command line. If SCLM is available to your terminal

session, the SCLM Main Menu is displayed.

Overview of Project Manager Tasks

The primary function of the project manager is to create and manage the project

environment. The SCLM project environment consists of three types of information

associated with an individual project:

v User Application Data (see “User Application Data” on page 141)

v Project Definition Data (see “Project Definition Data”)

v SCLM Control Data (see “Step 6: Allocate and Create the Control Data Sets” on

page 18).

Project Definition Data

The project manager uses the SCLM project definition to generate and maintain the

project environment. A project definition defines the desired development

environment to SCLM for an individual project. Using the project definition, the

product manager can define:

v The structure of the project hierarchy using groups and types

v The languages to use, such as COBOL and Pascal

v The rules to move data within the hierarchy (authorization codes)

v The SCLM options, such as audit and versioning

More than one project definition can be generated for a single project. The main

project definition for an SCLM project is the primary project definition. All other

project definitions for the same project are alternate project definitions. Alternate

project definitions are usually used for performing specific tasks that cannot or

should not be done with the primary project definitions. Use of alternate project

definitions, if any are required, should be kept to a minimum.

Generating a Project Environment

To create the project environment, the project manager should be familiar with

VSAM data sets and MVS high-level qualifiers. It is also helpful if the project

manager understands Job Control Language (JCL).

The project manager should determine which compatible (such as DATABASE 2)

programs, if any, are to be used with SCLM, then use the following steps to

© Copyright IBM Corp. 1990, 2005 3

generate a project environment:

STEP

See page

Standard SCLM With DB2

1. Determine the project’s hierarchy. 4 294

2. Identify the types of data to be supported. 8 294

3. Establish authorization codes. 8 294

4. Allocate the PROJDEFS data sets. 12 294

5. Allocate the project partitioned data sets (PDS). 13 295

6. Allocate and create the control data sets. 18 295

7. Protect the project environment. 23 295

8. Create the project definition. 24 295

9. Assemble and link the project definition. 40 295

Step 1: Determine the Project’s Hierarchy

As a project manager, you are responsible for generating and updating the

hierarchy of the project to accommodate project requirements. This step helps you

plan the project hierarchy. When you have completed this step, you should have a

diagram of the hierarchy with all the groups labeled, as well as an understanding

of how each group is used.

It is usually easier to draw a diagram of your hierarchy, to help you visualize what

the hierarchy looks like. The following rules govern the creation of hierarchies:

v Each group can have no more than one parent.

v Each group can have multiple groups promoting into it.

v There is no restriction on the total number of groups a hierarchy can have.

v A hierarchical view can contain no more than 123 groups. This is because MVS

has a limit of 123 extents for a concatenated partitioned data set.

v Each hierarchy has one root group, the topmost group.

v It is possible to have more than one hierarchy defined for one project.

v Defining no more than four layers makes it easier to use ISPF tools on the

SCLM-controlled members.

The following two figures show two examples of hierarchies. These hierarchies are

set up based on the development phases potential projects might use. You can

create hierarchies other than those presented here. As a project evolves, the

requirements that the project has on the hierarchy will change. With SCLM, you

can change the hierarchy to meet the needs of the project.

The reasoning behind the hierarchy shown in Figure 5 on page 5 follows:

v The development groups (USER1, USER2, and USER3) are where all

modifications to SCLM-controlled members are made.

v The INT group is for integrating (combining) all the SCLM-controlled members

from the development groups.

v The TEST group is the group where system or function testing of the application

will take place.

4 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

v The RELEASE group will contain the final version of the application being

developed. It is from this group that the application could be put into

production.

 The second hierarchy, shown in Figure 6, is different. This hierarchy has two

separate legs. Each leg of the hierarchy contains a separate subsystem of the

application being developed. The stage groups (STAGE1 and STAGE2) in each

hierarchy leg are used for integrating and unit testing the subsystems within each

hierarchy leg. The SYSTEST group is used to combine the subsystems from both

legs of the hierarchy for delivery to a system test organization.

USER1 USER3USER2

RELEASE

TEST

INT

Figure 5. Example of SCLM Hierarchies

Chapter 1. Defining the Project Environment 5

Use the preceding rules and the requirements of your project to draw your

hierarchy and label each group.

Primary Non-Key Group Testing Techniques

You can use primary non-key groups as a technique to allow integration and

testing of a software application. The technique is useful where integration work

can have far-reaching and undesirable effects, for example, when a global change

to an application affects the majority of developers. The technique is also useful

when schedule or other pressures are such that you must perform high-risk

integration of software. SCLM does not allow you to promote from a primary

non-key group.

In a normal SCLM scenario, you promote code from individual development

libraries to a common integration group before performing integration testing.

However, you can generate an alternate project definition that deviates from the

default project definition. The alternate project definition defines an intermediate

non-key group for integrating subsets of development groups. Define the non-key

group so that only key groups promote into the non-key group. Developers

authorized to this intermediate group can then promote code to it for unit and

function testing. Testing takes place in this group before promotion to the normal

integration group. Because being at a non-key group does not cause members to be

purged from a key group during a promote, no members are removed from the

default project definition. In this way, you avoid potential integrity problems.

Using this technique, the activities of small groups of integrators do not affect the

normal hierarchy until their testing is complete. By switching to the alternate

project definition, developers can easily test their integration by promoting to the

primary non-key group. When promoting to a non-key group, code still exists in

the normal hierarchy in the development libraries. SCLM promotion from the

development libraries, using the default project definition, would then incorporate

the code into the normal integration group. New code can go through an accurate

configuration test before being applied to the normal hierarchy. Code developed

using this scenario is potentially more complete and accurate than code developed

in a normal scenario.

STAGE2

USER2

STAGE1

USER1 USER3 USER4

SYSTEST

Figure 6. Example of SCLM Hierarchies

6 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Use Figure 7 and Figure 8 to compare a default hierarchy structure with an

alternate hierarchy structure. Figure 7 shows a default hierarchy structure for a

project. You can perform all normal development activities within the default

hierarchy structure.

 Figure 8 shows an alternate hierarchy structure with a primary non-key integration

group for the project shown in Figure 7.

Figure 7. Default (Primary) Project Hierarchy Structure

Figure 8. Alternate Project Hierarchy Structure with Primary Non-key Integration Group

Chapter 1. Defining the Project Environment 7

In the example, the developers (USER1, USER2, USER3) can use the alternate

project definition to promote code into the primary non-key group. You cannot

promote up from the primary non-key group, but you can draw down from it.

Promotion to a non-key primary group does not cause deletion of the components

from the respective development libraries. Building in the primary non-key group

allows the developers to integrate and test pieces of code still under development.

Code that is then complete can be promoted through the default project definition

from the development libraries into the normal integration group. The promotion

to the normal integration libraries causes the components to be deleted from the

respective development libraries, but not from the primary non-key group.

Deletion from the primary non-key group must be done manually using the SCLM

Library Utility, the Delete from Group Utility or through SCLM services, such as

DELGROUP.

Step 2: Identify the Types of Data to Support

This step identifies the types of data required by the applications under

development for your project. Some examples of the types of data used are source

code, object modules, load modules, and source listings. The list of types

developed in this step is used in later steps.

SCLM supports the same kind of data supported by MVS partitioned data sets.

The amount of data is also a factor in determining the types of data needed.

Different types (such as objects and listings) of data should not reside in the same

SCLM type. Determine the number of types you need based on the data you want

to maintain for the project. For example, if you want to maintain compiler listings,

a listing type is necessary. At a minimum, use four types to produce executable

code:

v Source type for application source code

v Object type for generated object code

v Load type for generated load modules

v Architecture type for architecture definition members.

Similar kinds of data can reside in separate types. For example, you can divide

source code into assembler source code and Pascal source code. To do this, identify

an assembler type and a Pascal type.

Step 3: Establish Authorization Codes

Authorization codes control the movement of data within the hierarchy. The

purpose of this step is to assign authorization codes to the hierarchy. Authorization

codes restrict the draw down and promotion of members to certain groups within

the hierarchy.

At least one authorization code must be defined for a project. If no authorization

codes are defined, SCLM will not permit members to be drawn down or

promoted. Authorization codes work only on editable types such as source, not on

build outputs. Authorization codes are assigned to each group in the hierarchy.

Groups can have any number of authorization codes assigned to them. Members

are assigned authorization codes when they are registered with SCLM. Members

can only exist in groups that have been assigned the same authorization codes as

the members.

It is not necessary to define more than one authorization code for the entire

project. A single authorization code allows each member under SCLM control to be

8 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

drawn down to any development group and be promoted to the top of the

hierarchy. If tighter restrictions on the movement of your data are required for

your project, you must identify those situations and define additional authorization

codes.

An example of when multiple authorization codes can be used is when an

application has multiple subsystems being developed in different legs of the

hierarchy and you need to ensure that the members of the two subsystems do not

get mixed in the development groups in the hierarchy legs. Authorization codes

can be set up to prevent the members from one subsystem from being drawn

down into the development groups of the other subsystem. This requires at most

two authorization codes. For additional possible uses of authorization codes, see

“Using Authorization Codes to Control SCLM Operations.”

Using the diagram that you drew for Step 1, examine the flow of members and

determine if any restrictions on the movement of members are required. Label each

group with at least one authorization code. Authorization codes can be up to 8

characters and cannot contain commas.

Using Authorization Codes to Control SCLM Operations

Authorization codes restrict promotions and draw downs on a member-by-member

basis for source code only. This section discusses some uses of authorization codes.

First, some facts about authorization codes:

v An authorization code is a character string up to 8 characters and cannot contain

commas.

v When you create the project definition, you assign zero or more authorization

codes to each group.

v Each member of every group within an SCLM-controlled project is assigned one

authorization code.

v In order to put a member into a group, the authorization code of that member

must match one of the authorization codes that have been assigned to the group.

v When all the authorization codes are removed from a group, no members can be

promoted into or out of that group.

v When you promote a member from one group to the next, the member retains

its authorization code. Thus, the group being promoted into and the group being

promoted from must have a matching authorization code. If, as a result of a

promote, an older version of the module was replaced, the authorization code

assigned to that older version is not kept.

Figure 9 on page 10 shows a simple hierarchy with four groups: RELEASE, TEST,

DEV1 and DEV2. The group RELEASE has been assigned only one authorization

code: DEV. Group TEST has two authorization codes: DEV and TESTONLY. Three

authorization codes (DEV, PROTO, and TESTONLY) have been assigned to DEV1.

Group DEV2 has DEV and L0 as its authorization codes.

Chapter 1. Defining the Project Environment 9

Code this information in the project definition as follows:

RELEASE FLMGROUP KEY=Y,AC=(DEV)

TEST FLMGROUP KEY=Y,AC=(DEV,TESTONLY),PROMOTE=RELEASE

DEV1 FLMGROUP KEY=Y,AC=(DEV,TESTONLY,PROTO),PROMOTE=TEST

DEV2 FLMGROUP KEY=Y,AC=(DEV,L0),PROMOTE=TEST

In Figure 9, the following relationships exist:

v A member in DEV1 with an authorization code of PROTO cannot be promoted

because group TEST does not have PROTO as an authorization code.

v For the same reason, a member in DEV1 with an authorization code of

TESTONLY can be promoted to TEST, but cannot be promoted to RELEASE.

v Similarly, a member in DEV1 or DEV2 with an authorization code of DEV can

be promoted all the way up to group RELEASE.

v A member in DEV2 cannot have an authorization code of TESTONLY or

PROTO; it must be either DEV or L0.

v A member in DEV2 with an authorization code of L0 cannot be promoted

because group TEST does not have L0 as an authorization code.

When you edit a member in a development group, SCLM looks at the

authorization code you specified on the edit panel and tells you the following:

v If that authorization code is not valid for that development group, you must

enter an authorization code that is assigned to that group. If you enter an

invalid authorization code and then press the help key, SCLM shows

authorization codes for that group.

v If use of that authorization code prevents promotion of that member at some

point in the group hierarchy, SCLM gives you the name of the group into which

promotion is not allowed.

v If use of that authorization code leads to a potential promotion conflict with

another member of the same name, SCLM does not allow the edit. An example

of this problem follows.

SCLM allows you to have two members of the same name and type residing in

two different development groups (such as DEV1 and DEV2 in Figure 9) under

certain conditions. Each of those members has an authorization code assigned to

it. Those codes, along with the authorization codes assigned to the higher

groups in the hierarchy, determine how far up the hierarchy each of those

members can be promoted. If the two promotion paths do not intersect, SCLM

lets you edit those members in those groups. However, if there is at least one

group through which both members can be promoted, changes made to one

Figure 9. Sample Hierarchy with Authorization Codes

10 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

member would be lost when the other member is promoted. In that case, SCLM

does not let you edit the members in those groups.

If a member exists in group DEV1, SCLM uses authorization codes to determine

whether you can edit a member with the same name and type in group DEV2:

 Table 1. Authorization Code Allowances

Auth. Code for

member in DEV1

Auth. Code for

member in DEV2 Allowed? Why?

DEV DEV No Both members can be promoted

through TEST.

DEV L0 Yes Promotion paths do not intersect.

PROTO TESTONLY No TESTONLY is not a valid

authorization code for DEV2.

PROTO L0 Yes Promotion paths do not intersect.

TESTONLY DEV No Both members can be promoted

through TEST.

TESTONLY L0 Yes Promotion paths do not intersect.

Allowing Parallel Updates

You can use the information in the previous section to set up a project in which

you can make modifications to what you have in production (development) while

being able to make quick fixes to production modules (maintenance). The simple

hierarchy is illustrated in the following example. An actual hierarchy can contain

many groups and layers.

 Define the groups as follows:

PROD FLMGROUP KEY=Y,AC=(FIXED)

DEV FLMGROUP KEY=Y,AC=(BETTER),PROMOTE=PROD

FIX FLMGROUP KEY=Y,AC=(FIXED),PROMOTE=PROD

There are three groups: PROD is the production library, DEV is the development

library, and FIX is the maintenance library. In practice, there would be a much

larger subhierarchy under both DEV and FIX in order to allow for both multiple

developers and for testing of applications before moving them to production.

DEV, FIX, and PROD each have a single authorization code, BETTER, FIXED, and

FIXED respectively, and could have more. More importantly, no authorization code

is assigned to both DEV and PROD. It is this aspect of the project definition that

prevents the promotion of any modules from group DEV into group PROD. When

the development code is ready to move into production, the authorization code

BETTER must be added to the valid authorization codes for the PROD group.

Chapter 1. Defining the Project Environment 11

A programmer planning to make changes to a module for the next release of an

application draws the module down from PROD into DEV, specifying an

authorization code of BETTER on the SCLM EDIT-ENTRY PANEL. Changes are

made and tested in DEV.

Suppose that while the module is being changed and tested in the DEV group, a

user encounters a problem with the application and another programmer

determines that the fix requires a change to the module that has been drawn down

to DEV.

The programmer can draw down the module into FIX even though that same

module has been drawn down into DEV. This is possible because the promotion

paths of the two modules do not intersect; the module in DEV cannot be promoted

into PROD because of authorization codes. Therefore, changes made to one module

do not overwrite changes made to the other copy.

When the fix has been made to the module in FIX and the application has been

rebuilt at that group, the user can run the application from group FIX until the fix

has been verified and then promoted to PROD.

Before the fix is promoted, the changes must be incorporated into the copy of the

modules in DEV. This is a manual change made by the current owner of the

modules in DEV with the assistance of the person who made the changes in FIX.

Keep in mind that although authorization codes can be used to restrict promotion

paths, they do not provide security against modifications to SCLM-controlled data

made outside of the SCLM environment. You should use RACF® (or the functional

equivalent) for that purpose.

Step 4: Allocate the PROJDEFS Data Sets

The PROJDEFS data sets are used to store the project definition data for an

individual project. The purpose of this step is to allocate the PROJDEFS data sets.

The PROJDEFS data sets are partitioned data sets with the following naming

convention:

project_id.PROJDEFS.*

SCLM requires that the load data set be named:

project_id.PROJDEFS.LOAD

When a user invokes SCLM for a specific project, SCLM uses the current

assembled version of the project definition located in the LOAD data set.

The data sets containing the project definition’s source and object code are not

required by SCLM to follow the PROJDEFS naming convention, but it is

recommended to make maintaining the project definition easier. Therefore,

following the naming convention would produce the following data sets:

project_id.PROJDEFS.SOURCE

project_id.PROJDEFS.OBJ

Allocate the PROJDEFS data sets using the attributes defined in Table 3 on page 18.

The PROJDEFS data sets should be protected from access by general users.

Protecting the PROJDEFS data sets is discussed in “Step 7: Protect the Project

Environment” on page 23.

12 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Step 5: Allocate the Project Partitioned Data Sets

The project partitioned data sets are used to store the user application data. These

data sets are organized into a hierarchy and controlled by the project definition.

Allocate the project partitioned data sets using either the ISPF Data Set Utility

(option 3.2) or a JCL process. Use the information in this step to determine the

names, number, and physical characteristics of the project partitioned data sets.

Data Set Naming Conventions

SCLM expects all the project partitioned data sets to use the default naming

convention of project.group.type. Because some projects cannot use the default

naming convention, SCLM allows the project manager to specify an alternate

naming convention either for all the project partitioned data sets or for the project

partitioned data sets associated with individual groups in the hierarchy.

If your data already exists, the existing data sets can be used in conjunction with

SCLM’s flexible data set naming capability. The next section provides additional

information on using this capability.

Flexible Naming of Project Partitioned Data Sets

With SCLM, product managers can use the SCLM-supplied default data set

naming convention or a user-defined naming convention. The default naming

convention is PROJECT.GROUP.TYPE. If the SCLM default naming convention is

not used, the project manager’s convention must use the MVS naming conventions.

For example, it is possible to use four or five qualifiers in the data set names

instead of the three qualifiers that are used by the SCLM naming convention. (The

PROJDEFS data sets are exceptions; these data sets must use the naming

convention defined in “Step 4: Allocate the PROJDEFS Data Sets” on page 12.)

To define a naming convention other than SCLM’s default naming convention, you

must specify data set names that correspond to specific groups or the entire

project. While the names of the data sets used by SCLM can use more than three

qualifiers, the developers still see the PROJECT.GROUP.TYPE naming convention

on the SCLM dialog panels and service calls. The project definition creates a

mapping between the PROJECT.GROUP.TYPE name and the user-defined data set

names associated with each group in the hierarchy.

Note: This mapping is only maintained while users are executing SCLM functions.

If ISPF utilities are used on data controlled by SCLM, the users should know

the mapping between the PROJECT.GROUP.TYPE name and the fully

qualified data set name.

The data set names are defined in the project definition with the FLMCNTRL and

FLMALTC macros. Each macro has a DSNAME parameter that allows the project

manager to specify the data set names for the entire project or for individual

groups. The FLMCNTRL macro defines the data set names for the entire project;

the FLMALTC macro defines the data set names on a group-by-group basis. See

the z/OS ISPF Software Configuration and Library Manager Reference for an example of

how to set up the macros to use flexible naming of partitioned data sets.

The DSNAME parameters on both macros work the same way and can be used

within the same project definition. The value specified on the DSNAME parameter

is a pattern for the data set name. This pattern must meet MVS naming

conventions and can contain the SCLM variables @@FLMPRJ, @@FLMGRP, and

@@FLMTYP. If DSNAME is not specified, SCLM uses the default naming

Chapter 1. Defining the Project Environment 13

convention of PROJECT.GROUP.TYPE. The use of variable @@FLMTYP is required.

SCLM verifies that the variable @@FLMTYP is used on each DSNAME parameter

when the project definition is loaded into memory. The variable @@FLMGRP is

very strongly recommended. The use of these variables minimizes the risk that

data set names associated with different groups are the same and prevents data

from being overwritten. The variable @@FLMPRJ is optional.

The SCLM variable @@FLMDSN is created from the value of the DSNAME

parameter. Therefore, if the data set name pattern is

@@FLMPRJ.component_name.@@FLMGRP.@@FLMTYP, the value of @@FLMDSN

will be @@FLMPRJ.component_name.@@FLMGRP.@@FLMTYP.

The versioning partitioned data sets can also use a naming convention other than

SCLM’s default naming convention. The VERPDS parameter on the FLMCNTRL

and FLMALTC macros is used to specify the name of the versioning partitioned

data sets. SCLM uses a default of @@FLMDSN.VERSION for the names of the

versioning data sets. If a pattern other than the default is used, the variables

@@FLMGRP and @@FLMTYP must be part of the data set name pattern. Using

two variables minimizes the risk that the versioning data set names associated

with different groups are the same, and prevents data from being overwritten.

 Attention:

SCLM does not guarantee the uniqueness of the data set names or check the

validity of values entered on the DSNAME parameter.

Number of Data Sets to Allocate

Normally, a data set should be allocated for every possible PROJECT.GROUP.TYPE

combination in the hierarchy. However, if the intent is to develop code in several

hierarchies that merge in one main hierarchy, there might be no need to allocate

some data sets. Allocating only the data sets that are actually used saves time

when creating the hierarchy and minimizes DASD use and catalog entries. See

Figure 10 on page 16 for an example of a hierarchy that does not have all data sets

allocated.

Only those data sets actually used in the hierarchy must be physically allocated.

SCLM functions will execute successfully for hierarchies that contain unallocated

data sets, as long as the unallocated data sets are not used. If a data set is not

allocated and SCLM attempts to use the data set, an error message is issued.

Data sets can be added at any time. If you leave a data set unallocated and later

find you need it, simply allocate the data set then.

Determining When Data Set Allocation Is Necessary

You can leave the data sets for the intermediate groups in your project unallocated

until the first time they are needed for a promote. You can also leave the data sets

for types that will not be used at a particular group unallocated. As an example, if

a developer is responsible for source code but not panels, then you can leave the

data set for the type containing panels unallocated for that developer’s group.

A data set need not be allocated if an EXTEND type is being used and the

hierarchy is designed so that the source code for the EXTEND type is always at a

higher group.

For example, consider a project definition with the FLMTYPE macro written as

follows:

14 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

CMNSRC FLMTYPE

BLDSRC FLMTYPE EXTEND=CMNSRC

In this situation, the type CMNSRC can contain members referenced by members

in the BLDSRC type. However, if the source code in CMNSRC will always be at a

higher layer in the hierarchy (for example, IVV), you do not need to allocate data

sets for type CMNSRC below the IVV layer in the main hierarchy.

How SCLM Functions Use Data Sets

SCLM uses a data set when it expects that the data set already contains a member

(for example, when attempting to delete a member), or when the data set will

contain a member (for example, when saving a new member). The following list

details how SCLM functions use a data set:

 Build Uses a data set if it contains a member that has a corresponding

accounting record and that member is being built or referenced by

another member that is being built. Build also uses data sets for

output (those referenced by the LOAD, OBJ, or LIST architecture

keywords, for example).

Promote Uses a data set if it contains a member that has a corresponding

accounting record and that member is being promoted. If these data

sets contain members that need to be promoted, they must be present

in the current group and in the group being promoted to; otherwise,

an error message is issued. If a promotion occurs from a non-key

group to a key group, the corresponding data sets at the previous key

group will also be used.

Delete Uses a data set when deleting a member.

Delete from Group Uses a data set when deleting a member.

Library Utility Uses a data set when deleting a member or when Edit, View or Build

are invoked.

Import Uses a data set when VSAM records are being imported into the

hierarchy. The member imported must exist somewhere in the

hierarchy view for the group being imported into.

Edit Uses a data set when storing or retrieving a member.

View Uses a data set when retrieving a member.

Migrate Uses a data set to retrieve information about a member that is being

migrated into the SCLM hierarchy.

Parse Uses a data set when parsing a member.

Package Backout The package details file contains an entry for each package, listing the

members in that package. This is built by Promote and used by

Package Backout.

Manipulating VSAM Records for Unallocated Data Sets

A build map can be created for a member that is higher in the hierarchy but for

which there is no source data set allocated for the group where the build is

occurring. If you delete a data set, the corresponding accounting records and build

maps can still exist in the VSAM databases.

Using the following utilities and services, you can browse or delete VSAM records

that correspond to an unallocated data set.

 Library Utility Browse and delete accounting records and build maps that

correspond to an unallocated data set.

Chapter 1. Defining the Project Environment 15

|

Delete Delete accounting records and build maps that correspond to an

unallocated data set.

Delete from Group Delete accounting records and build maps that correspond to an

unallocated data set.

Examples of Hierarchies with Unallocated Data Sets

A valid hierarchy that contains unallocated data sets is shown in Figure 10.

Member B INCLUDES member C. A build of member B from group USR1 will

succeed, although a data set was not allocated for Cmnsrc at the INT group. The

build will locate and use member C from the IVV group.

 A hierarchy that is not valid for the intended operation is shown in Figure 11 on

page 17. A promote of member B from the IVV group, which INCLUDES member

C, will fail, because promote will attempt to copy member C in IVV.Cmnsrc to

REL.Cmnsrc.

Figure 10. Valid Hierarchy with Unallocated Data Sets

16 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

Versioning Partitioned Data Sets

If the versioning capability is going to be used, at least one versioning partitioned

data set must be allocated. If you intend to use the VERCOUNT parameter on the

FLMCNTRL macro to specify that two or more versions be maintained, you must

specify at least one versioning partitioned data set for each group to be versioned.

Otherwise, errors can occur during version retrieval. You can also choose to have a

versioning partitioned data set associated with each ’group.type’ to be versioned.

Table 2 shows the attributes required for the versioning partitioned data set. All

attributes must be coded as shown, with the exception of LRECL, which defines

the minimum LRECL allocation required for versioning. The LRECL value must be

at least 259 and must be 4 bytes more than the LRECL of the largest source data

set to be versioned.

 Table 2. Versioning Data Set Attributes

LRECL = The larger of 259 and the source data set’s LRECL + 4

RECFM = Variable Blocked (VB)

BLKSIZE = At least LRECL + 4 Bytes. Use the optimal block size for your system.

The 4 bytes in the block size calculation are for MVS control information,

specifically for the blocklength field. For example, with a blocking factor of 10 the

block size would be calculated as follows:

(259 x 10) + 4 = 2594

Figure 11. Invalid Hierarchy for Intended Operation

Chapter 1. Defining the Project Environment 17

Project Partitioned Data Sets

This section provides guidance on what data set attributes should be used for the

project partitioned data sets. SCLM does not restrict the format of a data set.

Note: Data sets of the same type must be allocated with the same attributes.

Table 3 lists recommended data set attributes for some typical types. For best

performance, specify blocksize=0 to use the system-determined block size. Load

module data sets should be allocated with a block size of 6144 or greater.

 Table 3. Data Set Attributes

Type RECFM LRECL

Source FB 80

Object FB 80

Load U 0

Listings VB 137

Linkedit Maps FBM 121

Architecture definitions FB 80

Other Text FB 80

Space Considerations

SCLM has no special considerations that require the allocation of additional space

in the project partitioned data sets. Allocate the size of the project partitioned data

sets according to the amount of data that will be stored in them.

Step 6: Allocate and Create the Control Data Sets

Control data sets are used to track and control application programs within the

hierarchy. SCLM stores accounting and audit information in VSAM data sets

whose names are defined in the project definition. VSAM data sets consist of

VSAM clusters. A VSAM cluster is a named structure consisting of a group of

related components. While it is not required that the first qualifier of VSAM data

sets match the project name, it makes project maintenance easier. There are five

types of VSAM data sets that can be associated with a project.

Primary Accounting

The accounting data set contains information about the software

components in the project including statistics, dependency information and

build maps (information about the last build of the member). At least one

accounting data set is required for a project.

Secondary Accounting

The secondary accounting data set is a backup of the information in the

accounting data set.

Export Accounting

The export accounting data set contains accounting information that has

been exported from the accounting data set.

Primary Audit Control

The audit control data set contains audit information about changes to the

software components in the project for groups that have auditing enabled.

18 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Secondary Audit Control

The secondary audit control data set is a backup of the information in the

audit control data set.

 Most projects start out with one VSAM data set, the primary accounting data set.

Additional data sets can be added as the project evolves and more advanced

SCLM capabilities are needed. Additional VSAM data sets are required for Import,

Export, Auditing, automatic backup of accounting data and multiple control data

set support. In some cases, it is desirable to use multiple VSAM data sets instead

of one or two. If this is the case, see “Splitting Project VSAM Data Sets” on page 67

for additional information.

SCLM uses VSAM Record Level Sharing (RLS) to support sharing the VSAM data

sets across systems in a sysplex environment. This support requires:

v the Coupling Facility

v a VSAM cluster allocated with the proper characteristics for VSAM RLS

v VSAMRLS=YES specified on the FLMCNTRL macro in the SCLM project

definition.

Refer to the DFSMS/MVS® documentation for additional information about the

hardware and software requirements to support VSAM RLS.

The VSAM data sets cannot be shared under any other condition. Accessing any of

the VSAM data sets from multiple systems when VSAM RLS is not available can

result in the corruption of data, system errors, or other integrity problems. To

avoid these problems, the project manager must allocate VSAM data sets so that

they cannot be accessed from multiple systems.

All VSAM data sets should be REPROed periodically using the IDCAMS

reproduction utility. This will reduce fragmentation and optimize the performance

of your VSAM data sets.

Create the Accounting Data Sets

The accounting data sets contain information about the application programs in the

hierarchy, including statistics, dependency information, and build maps. SCLM

functions use the accounting information to control and track members in the

project partitioned data sets. Each project must have at least one primary

accounting data set.

An optional secondary accounting data set can be created. The secondary

accounting data set is a backup for the primary accounting data set. It allows for

the restoration of accounting information if the primary data set becomes

corrupted, for example due to a disk failure. This data set name must be unique.

The secondary accounting data set should be stored on a different volume than the

primary accounting data set. If a secondary data set is used, the performance of

SCLM will be degraded, because updates are made to both the primary and

secondary data sets. The information in both data sets should be compared

periodically to ensure the integrity of the accounting information.

Both the primary and secondary accounting data sets are created the same way.

Each accounting data set for the project must be a VSAM cluster. Use the IDCAMS

utility to define accounting data sets. If accounting information for different groups

is to be kept in separate accounting data sets, additional accounting data sets must

be created. An example of the JCL used to define an accounting data set follows:

Chapter 1. Defining the Project Environment 19

Note: This example is called FLM02ACT and is in the data set ISP.SISPSAMP that

is shipped with ISPF. ISP.SISPSAMP also contains a sample for the allocation

of the data set for Record Level Sharing. It is called FLM02RLS.

//jobname JOB (wkpkg,dpt,bin),’name’

//* code additional JOBCARD statements here

//***

//*

//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE SCLM

//* ACCOUNTING FILE FOR A GIVEN PROJECT.

//* THE HIGH-LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM USER CATALOG

//* IN ORDER TO CREATE THIS CLUSTER.

//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW

//* AS FOLLOWS:

//*

//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER

//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS

//* AND IT NEEDS TO BE DELETED:

//* DELETE ’project.account.file’ CLUSTER

//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE

//* DEFINE CLUSTER LINE OF JCL.

//* 2) CHANGE ALL project.account.file TO THE DESIRED FILE NAME.

//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC

//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS

//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE

//* IDCAMS DEFINE STEPS ARE REQUIRED.

//* ACCOUNTING DATASET NAMES ARE USUALLY CHOSEN IN THE FOLLOWING

//* MANNER - "PROJECT.ACCOUNT.FILE" (WHICH IS THE DEFAULT

//* USED IN THE PROJECT DEFINITION IF NONE IS SPECIFIED).

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)

//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

//*

//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.

//*

//**

//STEP1 EXEC PGM=IDCAMS

//*

//SYSPRINT DD SYSOUT=H

//*

//SYSIN DD *

 DEFINE CLUSTER +

 (NAME(’project.account.file’) +

 CYLINDERS(4 1) +

 VOLUMES(VVVVVV) +

 KEYS(26 0) +

 RECORDSIZE(264 32000) +

 SHAREOPTIONS(4,3) +

 SPEED +

 SPANNED +

 UNIQUE) +

 INDEX(NAME(’project.account.file.INDEX’) -

) +

 DATA(NAME(’project.account.file.DATA’) -

 CISZ(2048) +

 FREESPACE(50 50) +

)

/*

Figure 12. Accounting File Example (Part 1 of 2)

20 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Space Considerations for the Accounting Data Sets

Each accounting data set requires approximately three cylinders of 3390 DASD for

every 1000 partitioned data set members that SCLM controls. The space required

varies depending on how much information SCLM will control. If additional space

in the data set is desired, modify the space parameter (shown as CYLINDERS in

the example JCL).

Create the Export Data Sets

The export control data sets are optional unless the export and import functions

are used.

Before using the EXPORT service, you must allocate and define an export

accounting data set.

To prepare for the export operation:

1. Define the export accounting data sets to the project using the FLMCNTRL and

FLMALTC macros. Do not use data set names that have already been specified

for any ACCT or ACCT2 parameters in the FLMCNTRL and FLMALTC macros.

Note: SCLM variables, including @@FLMPRJ, @@FLMGRP, and @@FLMUID,

can be used when you specify the name of the accounting VSAM data

sets.

2. Use the EXPACCT parameter on the FLMCNTRL and FLMALTC macros to

specify the name of the export accounting data sets. This example illustrates

how to use this parameter:

 FLMCNTRL ACCT=SCLM.ACCOUNT.DATABASE, C

 EXPACCT=SCLM.EXPORT.ACCOUNT.DATABASE

SAMPLE FLMALTC ACCT=SCLM.ACCOUNT.SAMPLE, C

 EXPACCT=SCLM.EXPORT.ACCOUNT.SAMPLE

3. VSAM attributes should match those used for the Accounting files, except for

the SHAREOPTIONS, which must be SHAREOPTIONS(2,3).

Create the Audit Control Data Sets

The audit control data sets contain information about changes to SCLM-controlled

members that are located in groups being audited. The audit control data sets are

only required if the audit function is used. You must create the audit control data

//***

//*

//* INITIALIZE THE ACCOUNTING FILE

//*

//**

//STEP2 EXEC PGM=IDCAMS

//INPUT DD *

 SCLM ACCOUNTING FILE INITIALIZATION RECORD

/*

//OUTPUT DD DSN=project.account.file,DISP=SHR

//SYSPRINT DD SYSOUT=H

//SYSIN DD *

 REPRO INFILE(INPUT) OUTFILE(OUTPUT)

/*

//*

)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 12. Accounting File Example (Part 2 of 2)

Chapter 1. Defining the Project Environment 21

sets before the audit function is enabled. If auditing is used, each project must

have at least one primary audit control data set.

You can create an optional secondary audit control data set. The secondary audit

control data set is a backup for the primary audit control data set. It allows you to

restore audit control information if the primary audit control data set is corrupted.

Choose a unique name for this data set and put it on a different volume than the

primary audit control data set. If a secondary data set is used, SCLM’s

performance will be degraded because updates are made to both the primary and

secondary audit control data sets. The information in both data sets should be

compared periodically to ensure the integrity of the audit control information.

Use the IDCAMS utility to define audit control data sets. Each audit control data

set for the project must be a VSAM cluster. If audit control information for

different groups will be kept in separate audit control data sets, you must create

additional audit control data sets. The following JCL example defines audit control

data sets.

Note: This example JCL is called FLM02VER and is in data set ISP.SISPSAMP that

is shipped with SCLM.

//jobname JOB (wkpkg,dpt,bin),’name’

//* code additional JOBCARD statements here

//***

//*

//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE

//* AUDIT CONTROL DATA SET FOR A GIVEN PROJECT.

//* THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM CATALOG

//* IN ORDER TO CREATE THIS CLUSTER.

//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW

//* AS FOLLOWS:

//*

//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER

//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS

//* AND IT NEEDS TO BE DELETED:

//* DELETE ’project.version.file’ CLUSTER

//* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE

//* DEFINE CLUSTER LINE OF JCL.

//* 2) CHANGE ALL project.version.file TO THE DESIRED FILE NAME.

//* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC

//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS

//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE

//* IDCAMS DEFINE STEPS ARE REQUIRED.

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)

//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

//*

//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.

//*

//**

Figure 13. Audit Control Data Set Example (Part 1 of 2)

22 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Space Considerations for the Audit Data Sets

Each audit data set requires approximately one cylinder of 3390 DASD for every

100 partitioned data set members that SCLM controls. The space required varies

depending on how much information SCLM will control. If you require additional

space in the data set, modify the space parameter (shown as CYLINDERS in the

example JCL).

Step 7: Protect the Project Environment

SCLM provides a controlled environment to maintain and track all software

components. However, SCLM is not a security system. You must rely on RACF or

an equivalent security system to provide complete environment security. Consider

limiting authority to data sets in the hierarchy above the development layer.

The following sections describe the security requirements for the different types of

data in the SCLM environment. Use this information to set up the security for the

project environment. When this step is complete, the security requirements for the

project environment are complete.

//STEP1 EXEC PGM=IDCAMS

//*

//SYSPRINT DD SYSOUT=H

//*

//SYSIN DD *

 DEFINE CLUSTER +

 (NAME(’project.version.file’) +

 CYLINDERS(4 1) +

 VOLUMES(VVVVVV) +

 KEYS(40 0) +

 RECORDSIZE(264 32000) +

 SHAREOPTIONS(4,3) +

 SPEED +

 SPANNED +

 UNIQUE) +

 INDEX(NAME(’project.version.file.INDEX’) -

) +

 DATA(NAME(’project.version.file.DATA’) -

 CISZ(2048) +

 FREESPACE(50 50) +

)

/*//***

//*

//* INITIALIZE THE AUDIT CONTROL FILE

//*

//**

//STEP2 EXEC PGM=IDCAMS

//INPUT DD *

 SCLM AUDIT CONTROL FILE INITIALIZATION RECORD

/*

//OUTPUT DD DSN=project.version.file,DISP=SHR

//SYSPRINT DD SYSOUT=H

//SYSIN DD *

 REPRO INFILE(INPUT) OUTFILE(OUTPUT)

/*

//*

)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 13. Audit Control Data Set Example (Part 2 of 2)

Chapter 1. Defining the Project Environment 23

PROJDEFS Data Sets

The project definition LOAD data set should be restricted so that only the project

manager has UPDATE authority to it. All other developers need READ access to

this data set. Developers have no need to update the remaining PROJDEFS data

sets and should not have UPDATE access to those data sets. READ access can be

given to the other PROJDEFS data sets if this is reasonable for the project.

Project Partitioned Data Sets

v Each developer needs READ authority to all the project partitioned data sets.

v Each developer needs UPDATE authority to the development groups that the

individual uses to change SCLM-controlled members. UPDATE authority is also

required for any groups the developer is allowed to promote into.

v If the SCLM versioning capability is used, each developer needs UPDATE

authority to the versioning partitioned data sets.

v If the import/export capability is enabled, each developer needs UPDATE

authority to the export data sets.

v We suggest that the project manager have ALTER authority to all the project

partitioned data sets.

Control Data Sets

v Each developer in the project needs UPDATE authority to the control data sets

that are updated by the developers.

v Each developer needs READ access to the primary and secondary (if used)

accounting data sets for all groups in the hierarchy. This authorization is

required for SCLM to perform its verification.

v If cross-reference data sets are used in the project, each developer needs READ

access to the cross-reference data sets for all groups.

v If the auditing capability is used, each developer needs UPDATE authority to

the audit control data sets.

For more information about RACF, refer to z/OS Security Server RACF Command

Language Reference.

Step 8: Create the Project Definition

The project definition defines the development environment for an individual

project. The project definition is organized into three parts: the hierarchy definition,

project controls, and language definitions.

v The hierarchy definition determines the structure of the hierarchy and how data

moves through the hierarchy.

v Project controls define how SCLM operates for the project.

v The language definitions define the languages for the project.

When creating a project definition, it is usually easier to copy a sample project

definition and make the necessary project-specific modifications. IBM supplies

sample project definitions with SCLM located in the data set ISP.SISPSAMP. The

sample project definitions are named FLM@EXM1, FLM@EXM2, FLMWBPRJ, and

FLM01PRJ.

FLM@EXM1 is an example project definition that uses several languages, such as

COBOL, PL/I, and Script.

24 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

FLM@EXM2 is an example project definition that shows several languages using

Cross System Product, DB2, and IMS support.

The FLMWBPRJ project definition example includes languages that are used to

build an application on your workstation using SCLM’s workstation build

capability.

A sample project definition called FLM01PRJ is also included in ISP.SISPSAMP. It is

used for the example project scenario beginning in section “Project Manager

Scenario” on page 41, and by the Create Sample SCLM Project dialog (refer to

Option 10.7 in z/OS ISPF User’s Guide Vol II).

Copy the project definition that is appropriate for your project, FLM@EXM1,

FLM@EXM2 or FLMWBPRJ into your project.PROJDEFS.SOURCE data set. All

project definitions and language definitions for your project should reside in your

project.PROJDEFS.SOURCE data set.

Each part of the project definition uses SCLM macros to define the data so that

SCLM understands it. The flexibility of these macros allows you to customize each

project definition for specific purposes. z/OS ISPF Software Configuration and Library

Manager Reference describes the use of these macros in detail.

Note: Because these are S/370 Assembler language macros, all rules pertaining to

macros apply. In addition, there are some SCLM rules involving the use of

the macros.

Alternate Project Definitions

You can generate more than one project definition for a project. Each project

definition defines the relationships between groups in the project database and the

processes that you can perform on the data in the project database. Each project

definition can define a different database structure, specify different control

options, or support different languages for the project.

Limit the use of alternate project definitions to satisfying a temporary need for a

capability that the default (primary) project definition does not provide. You can

use alternate project definitions successfully if they are never used to introduce or

update members controlled under the primary project definition. Thus, you could

use an alternate project definition to export data from the database definition or

reference data in the primary database definition. However, if you use an alternate

project definition to restrict an SCLM verification capability for data that is

intended for the primary project definition, you can introduce integrity problems.

You can have an unlimited number of alternate project definitions for a project.

Figure 14 on page 26 shows an alternate project definition with a primary non-key

integration group (DEPT) defined for the project database structure shown in

Figure 7 on page 7.

Chapter 1. Defining the Project Environment 25

Create the Hierarchy Definition

This step discusses the hierarchy definition. When this step is complete, the

hierarchy definition of the project definition is complete.

The hierarchy definition defines the project’s hierarchy using groups and types.

The rules for moving data within the hierarchy are defined with authorization

codes. This information was created in Steps 1, 2, and 3. Modify the example

project definition using the following macros and the information from Steps 1, 2,

and 3 to define the hierarchy.

The macros that are used in the hierarchy definition are shown in the order that

they are usually used in the project definition.

 PROJ1 FLMABEG

 *

 *

 * TYPE SPECIFICATION

 *

 ARCHDEF FLMTYPE

 DESIGN FLMTYPE

 LIST FLMTYPE

 LOAD FLMTYPE

 OBJ FLMTYPE

 SOURCE FLMTYPE

 *

 *

 * GROUP SPECIFICATION, DEFINE THE AUTHORIZATION CODES

 *

 RELEASE FLMGROUP AC=(REL),KEY=Y

 TEST FLMGROUP AC=(REL),KEY=Y,PROMOTE=RELEASE

 INT FLMGROUP AC=(REL),KEY=Y,PROMOTE=TEST

 DEPT FLMGROUP AC=(REL),KEY=N,PROMOTE=INT

 USER1 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT

 USER2 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT

 USER3 FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT

 *

 *

 * PROJECT CONTROLS

 *

 FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE, C

 MAXLINE=75

 *

 *

 * LANGUAGE DEFINITIONS

 *

 COPY FLM@ARCD -- ARCHITECTURE LANGUAGE --

 COPY FLM@TEXT -- TEXT LANGUAGE --

 COPY FLM@SCRP -- SCRIPT 3 LANGUAGE --

 COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE --

 COPY FLM@COBL -- COBOL LANGUAGE --

 COPY FLM@FORT -- FORTRAN IV LANGUAGE --

 COPY FLM@PSCL -- PASCAL LANGUAGE --

 COPY FLM@PLIO -- PL/I OPTIMIZER LANGUAGE --

 COPY FLM@L370 -- 370 LINKAGE EDITOR --

 *

 FLMAEND

Figure 14. Sample Alternate Project Definition

26 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Specify the Project Name with FLMABEG

This macro defines the project name. It is required and must be the first macro in

the project definition. You can use it only once. The project name must match the

first qualifier of the PROJDEFS.LOAD data set.

If you want more than one project definition for a project, keep the project name in

the alternate project definitions the same. See “Alternate Project Definitions” on

page 25 for more information. In the example on page 32, the FLMABEG macro

defines project PROJ1.

Define Authorization Groups with FLMAGRP

Use this macro to define a set (or group) of authorization codes. This macro is

optional and needed only if you are defining a large number of authorization

codes. You can use it multiple times.

The FLMAGRP provides a way of using an identifier to represent a list of

authorization codes. If you decide to use multiple authorization codes for any of

the groups in your hierarchy, it might be easier to associate an identifier with the

list. If the list needs to be changed at a later date, the changes can be made on the

FLMAGRP macros rather than changing the authorization code lists on all the

FLMGROUP macros. The FLMAGRP macro must appear before any reference to

the authorization group that it defines. The example on page 32 uses only one

authorization code and therefore does not need to use FLMAGRP macros.

Define Types with FLMTYPE

Use this macro to define one type in the project hierarchy. At least one occurrence

of this macro is required. You can use it multiple times.

Define the types identified in Step 2: Identify the Types of Data to Support using

the FLMTYPE macro. For example, in the sample project definition depicted on

page 32, type ARCHDEF is defined to contain architecture members.

Define Groups with FLMGROUP

Use this macro to define one group in the project hierarchy. At least one occurrence

of this macro is required. You can use it multiple times.

Define the groups identified in Step 1: Determine the Project’s Hierarchy using the

FLMGROUP macro. Each group in the hierarchy requires an FLMGROUP

statement.

The authorization codes defined in Step 3: Establish Authorization Codes must also

be defined now. Use the AC parameter on the FLMGROUP macro to define the

authorization codes listed in Step 3: Establish Authorization Codes. The example

on page 32 shows a project definition with only one authorization code defined.

End the Definition with FLMAEND

This signifies the end of the project definition. It must be the last macro in the

project definition and is required. You can use it only one time.

Set the Project Control Options

The project control options dictate SCLM processing for an individual project.

When this step is complete, the project controls of the project definition will be set

up for the new project. Use project control options to specify:

v Primary accounting data set

v Secondary accounting data set

v Export accounting data set

Chapter 1. Defining the Project Environment 27

v Audit control data set

v VSAM Record Level Sharing

v Versioning partitioned data set

v Project partitioned data set naming conventions

v Maximum lines per page

v Number of versions to keep

v Translator option override

v SCLM temporary data set allocation

v Change code verification routine

v Build and promote user exit routine

The following macros that can be used in the control section of the project

definition are shown in the order that they are usually used in the project

definition:

FLMCNTRL Use this macro to specify project-specific control options. The

options on FLMCNTRL apply to the entire project. This macro is

optional unless you change any of SCLM’s default control options.

You can use it one time.

FLMALTC Use this macro to provide alternate control for individual groups.

This macro is used to override certain options on the FLMCNTRL

macro for specific groups. The options on the FLMALTC macro

apply only to the groups using it. This macro is optional. You can

use it multiple times.

FLMATVER Use this macro to enable the audit and version capability and to

define the type of data, (audit or audit and versioning, to capture

with the capability. If a project is using the versioning capability, it

must also use the audit capability. This macro is optional. You can

use it multiple times.

Primary Accounting Data Set Specification

The ACCT control option specifies the name of the primary accounting data set.

The data set you specify must be the name of the VSAM cluster you want to use.

The default accounting cluster name is project.ACCOUNT.FILE, where project is the

8-character name for the project.

In the example of a project definition on page 32, the primary accounting data set

name is PROJ1.ACCT.FILE.

Secondary Accounting Data Set Specification

The ACCT2 control option specifies the name of a backup VSAM accounting data

set for the project. If a severe problem occurs with the primary accounting data set,

you could use this backup data set to restore the primary accounting information.

If you use this option, additional VSAM updates to the secondary accounting data

set take place and can affect SCLM’s performance.

Export Accounting Data Set Specification

The EXPACCT control option specifies the name of the export accounting data set.

The data set you specify must be the name of the VSAM cluster you want to use.

The following variables can be used in specifying the name of the export

accounting data set name:

v @@FLMPRJ

v @@FLMGRP

v @@FLMUID

28 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The EXPACCT control option must have a data set name that is different from the

ACCT or ACCT2 control option specified in FLMCNTRL or any FLMALTC macro.

The example project definition found on page 32 does not specify an export

accounting data set.

Audit Control Data Sets Specification

The audit control data sets are optional. They only need to be specified if SCLM’s

auditing capability will be used. The VERS and VERS2 control options are used to

specify the audit control data sets created in “Step 6: Allocate and Create the

Control Data Sets” on page 18. The VERS control option specifies the primary

audit control data set. The VERS2 control option specifies the secondary audit

control data set that is a backup for the primary audit control data set. When using

the auditing capability, the secondary audit control data set is optional. The

FLMALTC macro can be used to specify different audit control data sets on specific

groups.

VSAM Record Level Sharing (RLS)

The VSAMRLS control option indicates whether VSAM Record Level Sharing

should be used. The default value is NO. The example found in this chapter does

not use VSAM Record Level Sharing.

Versioning Partitioned Data Sets Specification

Specifying the names of versioning partitioned data sets is optional. The VERPDS

control option allows you to specify the names of partitioned data sets that will

contain the versioned data for a project. If the names of the versioning partitioned

data sets will be different for specific groups, the FLMALTC macro must be used

to associate the names of the versioning partitioned data sets with the specific

groups. The following variables can be used in specifying the name of the

versioning partitioned data set name:

v @@FLMPRJ

v @@FLMGRP

v @@FLMTYP

v @@FLMDSN

Project Partitioned Data Set Naming Conventions

The DSNAME control option is used to specify a naming convention other than

the SCLM default for the project partitioned data sets. The DSNAME option allows

the project manager to specify the naming convention for all the data sets in the

hierarchy. If the naming convention of the project partitioned data sets will be

different for specific groups then the FLMALTC macro must be used so the naming

convention for the data sets associated with the specific groups will be changed.

For more information about modifying the naming convention for project

partitioned data sets see “Flexible Naming of Project Partitioned Data Sets” on

page 13.

Maximum Lines Per Page

Use the MAXLINE control option to specify the maximum lines per page for all

SCLM-generated reports. The default is 60. The minimum number of lines per

page is 35. In the example project definition on page 32, the maximum number of

lines per page defaults to 60.

Number of Versions to Keep

Use the VERCOUNT parameter to specify how many versions of a member to

keep. The default value of zero, used in the example found in this chapter,

indicates that all versions are kept. The number of versions specified using this

Chapter 1. Defining the Project Environment 29

parameter applies to all types that are versioned. The VERCOUNT parameter on

the FLMATVER macro can be used to override this value for specific types.

Valid values are 0 and any integer value greater than or equal to 2. Because that is

what is already in the hierarchy, 1 is not a valid value. If you specify a value other

than the default and you intend to version multiple groups in the hierarchy, either

use the FLMALTC macro to specify different VERPDS data sets for each group or

use the @@FLMGRP variable in the VERPDS name on the FLMALTC macro.

Failure to allocate and specify unique VERPDS data sets can result in difficulty

retrieving versions.

Translator Option Override

The OPTOVER control option allows you to keep developers from overriding

project-defined translator options. If you specify Y, developers can override the

translator options for any of the languages by using the PARM statement in the

architecture members. For additional information on translator options, see Part 2

of this document.

If you specify N, SCLM uses only translator options you specify in the language

definition for the translators. Specifying N also overrides the OPTFLAG parameter,

which allows option override by the translator. The default for the OPTOVER

control option is Y. In the example project definition on page 32, the OPTOVER

option defaults to Y.

SCLM Temporary Data Set Allocations

Many installations specify one or more I/O unit names as Virtual Input Output

(VIO) devices at system generation time. Use of these devices typically improves

system performance by eliminating much of the overhead and time required to

move data physically between main storage and an I/O device.

To take advantage of this facility, specify the name of the VIO unit in your project

definition as the VIOUNIT parameter on the FLMCNTRL macro. This unit will be

used for all temporary data sets under the following conditions:

v IOTYPE = O, P, S, or W

v CATLG = N

v RECNUM <= the MAXVIO parameter.

Some of the temporary data sets used by versioning will use the VIO unit as well

as long as the size of the temporary data set to be allocated is less than or equal to

the MAXVIO value.

Temporary data set allocations that fail to meet any of the preceding conditions

will be allocated using the unit specified via the DASDUNIT parameter on the

FLMCNTRL macro.

The default value for MAXVIO is 5000, and the maximum allowable value is

2147483647. A relatively large value should be specified in order to ensure that

SCLM temporary data sets are allocated using the VIO unit. If SCLM functions fail

for lack of memory (S80A ABEND or S878 ABENDs), try reducing this value.

The size of the temporary data sets allocated for translators is determined by the

attributes specified on the FLMALLOC macros in the language definition. The size

of the temporary data sets used by versioning is based on the attributes of the

source data set being versioned.

30 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

User Exit Routine Specification

SCLM provides a number of exit points that you can use to customize SCLM

processing or to integrate SCLM with other products. You can specify your own

user exit routines in the project definition using the user exit parameters on the

FLMCNTRL macro. A sample user exit for use with Tivoli Information

Management is provided by ISPF. See Chapter 6, “Using SCLM and Tivoli

Information Management for z/OS,” on page 129 for more information.

See Chapter 2, “User Exits,” on page 51 for more information.

Example Project Definition

Figure 15 on page 32 shows an example of a project definition. The source for this

example can be found in the ISPF sample library, ISP.SISPSAMP, member

FLM@EXM1.

Chapter 1. Defining the Project Environment 31

TITLE ’*** PROJECT DEFINITION FOR PROJECT=PROJ1 ***’

PROJ1 FLMABEG

*

* **

* * DEFINE THE AUTHORIZATION CODES *

* **

GRP1 FLMAGRP AC=(A1,B1,C1)

GRP2 FLMAGRP AC=(A2,B2,C2)

GRPALL FLMAGRP AC=(GRP1,GRP2)

*

* **

* * DEFINE THE TYPES *

* **

*

ARCHDEF FLMTYPE EXTEND=SOURCE

COMP FLMTYPE

DICT FLMTYPE

DOCS FLMTYPE

LINKLIST FLMTYPE

LIST FLMTYPE

LMAP FLMTYPE

LOAD FLMTYPE

OBJ FLMTYPE

OBJ1 FLMTYPE

OBJ2 FLMTYPE

SCRIPT FLMTYPE EXTEND=SOURCE

SOURCE FLMTYPE

*

* **

* * DEFINE THE GROUPS *

* **

*

DEV1 FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=TEST

DEV2 FLMGROUP AC=(GRP2),KEY=Y,PROMOTE=TEST

TEST FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=RELEASE

RELEASE FLMGROUP AC=(GRPALL),KEY=Y,ALTC=RELDB

*

**

* PROJECT CONTROLS

**

*

 FLMCNTRL ACCT=PROJ1.ACCT.FILE, C

 VERS=PROJ1.VER1.FILE, C

 VERS2=PROJ1.VER2.FILE, C

 MAXVIO=999999, C

 VIOUNIT=VIO

*

RELDB FLMALTC ACCT=PROJ1.ACCT.FILEX, C

 VERS=PROJ1.VER1.FILEX, C

 VERS2=PROJ1.VER2.FILEX

*

**

* VERSIONING AND AUDITABILITY *

**

*

*

 FLMATVER GROUP=TEST, C

 TYPE=SOURCE, C

 VERSION=YES

*

 FLMATVER GROUP=RELEASE, C

 TYPE=SOURCE, C

 VERSION=YES

Figure 15. Example Project Definition (Part 1 of 2)

32 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

* LANGUAGE DEFINITION TABLES

**

*

*

**

* NON-COMPILERS

**

*

 COPY FLM@ARCD -- ARCHITECTURE DEF. LANGUAGE --

 COPY FLM@CLST -- CLIST LANGUAGE --

 COPY FLM@REXX -- REXX LANGUAGE --

 COPY FLM@REXC -- REXX PARSER AND COMPILER --

 COPY FLM@TEXT -- TEXT LANGUAGE --

 COPY FLM@SCRP -- SCRIPT 3 LANGUAGE --

 COPY FLM@BOOK -- SCRIPT/BOOKMASTER LANGUAGE --

*

* REXX PARSERS WITH STANDARD COMPILERS

*

 COPY FLM@RASM -- 370 ASSEMBLER H LANGUAGE --

 COPY FLM@RC37 -- 370 C LANGUAGE --

 COPY FLM@RCBL -- COBOL II LANGUAGE --

*

**

* STANDARD COMPILERS USING SYSTEM MACRO LIBRARIES

**

*

COBOL FLMSYSLB SYS1.EXAMPLE.MACROS

 COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE --

 COPY FLM@ASMH -- 370 ASSEMBLER H LANGUAGE --

 COPY FLM@C370 -- 370 C LANGUAGE --

 COPY FLM@CPLK -- 370 C + PRE-LINK LANGUAGE --

 COPY FLM@CLNK -- 370 C PRE-LINK/LINK-EDIT --

 COPY FLM@COBL -- COBOL LANGUAGE --

 COPY FLM@COB2 -- COBOL II LANGUAGE --

 COPY FLM@FORT -- FORTRAN IV LANGUAGE --

 COPY FLM@HLAS -- HIGH LEVEL ASSEM. LANGUAGE --

 COPY FLM@PSCL -- PASCAL LANGUAGE --

 COPY FLM@PLIC -- PL/I CHECKOUT LANGUAGE --

 COPY FLM@PLIO -- PL/I OPTIMIZER LANGUAGE --

*

* LANGUAGE DEFINITIONS TO SUPPORT OBJ AND LOAD WITHOUT SOURCE

*

 COPY FLM@OBJ -- DUMMY LANG DEF TO MIGRATE OBJ --

 COPY FLM@COPY -- COPY OBJ TO OUTPUT TYPE --

*

* LINKAGE EDITORS *

*

 COPY FLM@L370 -- 370 LINKAGE EDITOR --

*

**

*

 FLMAEND

*

* 5665-402 (C) COPYRIGHT IBM CORP 1992, 1990

Figure 15. Example Project Definition (Part 2 of 2)

Chapter 1. Defining the Project Environment 33

Define the Language Definitions

Language Definitions define the languages and translators that a project uses.

SCLM functions invoke translators (such as compilers, parsers, and linkage editors)

based on a member’s language. The language definition defines the translators

used by each language. Each language can have multiple translators defined for it.

The translators can be IBM program products, independent program products, or

user-written translators.

IBM provides examples of language definitions for many commonly used

languages such as COBOL and PL/I.

 Table 4. Language Definitions Supplied with SCLM

Compilers and Linkage Editors Language Definitions

Architecture definition FLM@ARCD (noncompiler)

BookMaster FLM@BOOK (noncompiler)

CICS map groups FLM@BMS

CLIST FLM@CLST (noncompiler)

COBOL OS/VS FLM@COBL

COBOL OS with CICS preprocessing FLM@CCOB

COBOL OS with DB2 preprocessing FLM@2COB

COBOL OS with DB2 and CICS preprocessing FLM@ECOB

COBOL II FLM@COB2

COBOL II with CICS preprocessing FLM@CICS

COBOL II with DB2 preprocessing FLM@2CO2

COBOL II with DB2 and CICS preprocessing FLM@ECO2

COBOL II with member expansion and CICS

preprocessing

FLM@ICO2

COBOL FLM@RCBL (COBOL parser written in

REXX)

C/C++ for MVS FLM@RCIS (C/C++ parser written in

REXX)

C/370 FLM@C370, FLM@RC37 (C/370 parser

written in REXX)

C/370 with CICS preprocessing FLM@CC

C/370 with DB2 preprocessing FLM@2C

C/370 with DB2 and CICS preprocessing FLM@EC

C/370 with member expansion and CICS

preprocessing

FLM@IC

C/370 with pre-link FLM@CPLK

C/370 pre-link with link-edit FLM@CLNK

DB2 See Table 21 on page 295

FORTRAN IV FLM@FORT

FORTRAN IV with DB2 preprocessing FLM@2FRT

JOVIAL FLM@JOV FLM@JOVC

34 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 4. Language Definitions Supplied with SCLM (continued)

Compilers and Linkage Editors Language Definitions

Object language definition to migrate object

modules into SCLM as outputs (non-editable)

FLM@COPY

Object/Load dummy language definition to

migrate object and load into SCLM as inputs

(editable)

FLM@OBJ

Pascal FLM@PSCL

PL/I Checkout Compiler FLM@PLIC

PL/I Optimizer with DB2 preprocessing FLM@2PLO

PL/I Optimizing Compiler FLM@PLIO

PL/I Optimizer with CICS preprocessing FLM@CPLO

PL/I Optimizer with DB2 and CICS

preprocessing

FLM@EPLO

PL/I Optimizer with member expansion and

CICS preprocessing

FLM@IPLO

REXX FLM@REXX (noncompiler) FLM@REXC

(compiler)

Language Parsers written in REXX FLM@RASM (Assembler), FLM@RCBL

(COBOL), FLM@RC37 (C/370),

FLM@RCIS (C/C++ for MVS)

SCRIPT 3 FLM@SCRP (noncompiler)

S/370 Assembler F FLM@ASM

S/370 Assembler with DB2 preprocessing FLM@2ASM

S/370 Assembler with CICS preprocessing FLM@ASMC

S/370 Assembler with DB2 and CICS

preprocessing

FLM@EASM

S/370 Assembler with member and CICS

preprocessing

FLM@IASM

S/370 Assembler H FLM@ASMH

High Level Assembler for MVS FLM@HLAS, FLM@RASM (Assembler

parser written in REXX)

S/370 Linkage Editor FLM@L370

TEXT FLM@TEXT (noncompiler)

All the example language definitions are located in the data set ISP.SISPMACS that

is shipped with SCLM.

The ISPF Sample and Macro libraries contain a number of files to support SCLM

workstation builds. The ISPF Sample Library contains the following:

v FLMWBMIG - Sample migration EXEC for IBM CSET++ for OS/2OS/2® “Hello

World 6” sample

v FLMWBUSR - Sample USERINFO file

v FLMWBAIO - Sample ACTINFO file for IBM CSET++ for OS/2 “Hello World 6”

sample

v FLMWBAIW - Sample ACTINFO file for Borland (TM) C++ “Hello World”

sample

Chapter 1. Defining the Project Environment 35

v FLMWBAIX - Sample ACTINFO file for IBM CSET++ for AIX

v FLMWBTMP - Sample workstation language definition template

v FLMWBOS2 - High-level architecture definition to build IBM CSET++ for OS/2

“Hello World 6” sample

v FLMWBIPF - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” help file

v FLMWBDLL - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” DLL file

v FLMWBEXE - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” EXE file

v FLMWBWIN - High-level architecture definition to build Borland C++ “Hello

World” sample

The Macro Library contains sample language definitions for OS/2 and Windows.

The IBM CSET++ for OS/2 language definitions are:

v FLM@WICC - Compile

v FLM@WDUM - Compile dummy object to hold DLLs

v FLM@WEXE - Link EXE

v FLM@WIPF - Build Help

v FLM@WLNK - Link386 to Link the DLL

v FLM@WRC - Resource compile

The Borland (TM) C++ for Windows language definitions are:

v FLM@WBCC - Compile

v FLM@WBRC - Resource Compile

v FLM@WTLK - TLINK OBJ to EXE

The IBM CSET++ for AIX sample language definitions is:

v FLM@WXLC - Compile

This step describes how to define language definitions to the project definition.

When this step is complete, all the languages your project will use will be defined.

To define the language definitions:

1. Determine what languages are used in your project.

2. Copy the appropriate example language definitions to the

project.PROJDEFS.SOURCE data set allocated in “Step 4: Allocate the

PROJDEFS Data Sets” on page 12.

3. Modify the language definitions.

If you do not find an example language definition that meets your project

requirements, you can write a new language definition. For instructions on

defining a new language to SCLM, see “Defining a New Language to SCLM”

on page 101.

Refer to the z/OS ISPF Software Configuration and Library Manager Reference for

details on the use of each SCLM macro.

Modifying Example Language Definitions

Use the following macros to modify language definitions for specific project

requirements.

36 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 5. SCLM Macros for Language Definition

FLMSYSLB Use this macro to define data sets that contain system, project, or

language dependencies that are referenced by SCLM members but are

not in the SCLM hierarchy themselves. Examples are system macros for

Assembler programs and compiler-supplied include files for C

programs.

FLMLANGL Use this macro to define the language to SCLM.

FLMINCLS Use this macro to associate sets of includes found during the parse of a

member with the types in the project definition that contain those

includes. FLMALLOC macros then reference this macro to allocate the

include libraries for build translators. The FLMINCLS macro can be used

multiple times for each language, but each FLMINCLS macro must have

a unique name within the language and be associated with at least one

FLMALLOC macro. This helps ensure that the includes that are found

by build are the same ones found by the translators.

FLMLRB LD Use this macro to tell SCLM to automatically rebuild members with this

language after they are promoted into the listed groups.

FLMTRNSL Use this macro to define a translator for a language. It can be used

multiple times for a language.

FLMTOPTS Use this macro to vary the options passed to a build translator based on

the group where the build is taking place. Options can be appended to

the existing options or replace the options completely.

FLMTOPTS macros must follow an FLMTRNSL macro with

FUNCTN=BUILD.

FLMTCOND Use this macro to specify conditional execution of a BUILD translator.

Part of the specification can include examination of return codes from

previous BUILD translators in the language definition.

FLMALLOC Use this macro for each data set allocation required by a translator. If

you are using a ddname substitution list, specify an FLMALLOC macro

for each ddname in the correct order. If not, determine the ddnames that

are needed by the translator and specify an FLMALLOC macro for each

ddname.

FLMCPYLB Use this macro to identify data sets to be concatenated to a ddname. The

data sets must be preallocated. The FLMCPYLB data sets are used as

input to the Parse and other translators.

For each language, take the following actions as necessary:

v Specify data sets containing dependencies that are not to be tracked, such as

assembler system macros (macro FLMSYSLB).

v Specify the maximum number of includes, change codes, user data records,

compilation units, and external dependencies expected in a source member

(macro FLMLANGL; keyword BUFSIZE).

v Determine if ddname substitution is needed for the translator. This information

can be found in the translator documentation. Adjust the PORDER parameter on

the FLMTRNSL macro as needed.

v Verify translator load module names and load data sets for accuracy (macro

FLMTRNSL; keywords COMPILE, DSNAME, and TASKLIB).

v Adjust translator return codes to project requirements if nonzero return codes

are acceptable (macro FLMTRNSL; keyword GOODRC).

v Update default translator options (macro FLMTRNSL; keyword OPTIONS).

v Verify translator version information (macro FLMTRNSL; keyword VERSION).

Chapter 1. Defining the Project Environment 37

v Specify output listings (macro FLMALLOC; keyword PRINT).

v Specify output default types (macro FLMALLOC; keyword DFLTTYP) to match

the FLMTYPE type specified in the project definition.

v Verify that system libraries are being allocated for build translators. Either

specify ALCSYSLB=Y on the FLMLANGL macro or ensure that the data sets

from FLMSYSLB macros are specified on FLMCPYLB macros following

IOTYPE=I allocations.

v Specify the include sets for the language to use. You must specify all the

include-sets returned by the parser for the language. If you add a new

FLMINCLS macro, ensure that it is referenced by at least one FLMALLOC of a

build translator. If you remove an FLMINCLS macro, update any FLMALLOC

macros that reference it, ensuring that no member’s accounting data contains

references to that include set.

Figure 16 on page 39 shows an example of an OS/VS COBOL language definition.

38 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

In the example in Figure 16, the COBOL language is defined to SCLM by the

FLMLANGL macro. The FLMTRNSL parameters specify particular information

about the compiler:

v The name of the compiler: COBOL.

v The name of the compiler load module: IKFCBL00.

v The version of the compiler: 1.0.

v The compiler options: DMA, PRI, SIZE=512K, APOS, CNT=77, BUF=30K, OPT,

XREF

**

*

* OS/VS COBOL LANGUAGE DEFINITION FOR SCLM

**

*

 FLMLANGL LANG=COBOL,VERSION=COBLV1.0,ALCSYSLB=Y C

 TSLINL=80, C

 TSSEQP=’S 1 6 S 73 80’

*

* PARSER TRANSLATOR

*

 FLMTRNSL CALLNAM=’SCLM COBOL PARSE’, C

 FUNCTN=PARSE, C

 COMPILE=FLMLPCBL, C

 PORDER=1, C

 OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

*

* BUILD TRANSLATOR(S)

*

* --COBOL INTERFACE--

 FLMTRNSL CALLNAM=’COBOL’, C

 FUNCTN=BUILD, C

 COMPILE=IKFCBL00, C

 VERSION=1.0, C

 GOODRC=0, C

 PORDER=1, C

 OPTIONS=(DMA,PRI,SIZE=512K,APOS,CNT=77,BUF=30K,OPT,XREF)

*

* DDNAME ALLOCATIONS

*

 FLMALLOC IOTYPE=O,DDNAME=SYSLIN,KEYREF=OBJ,RECNUM=5000,DFLTTYP=OBJ

 FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC

 FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000

 FLMALLOC IOTYPE=W,DDNAME=SYSUT1,RECNUM=5000

 FLMALLOC IOTYPE=W,DDNAME=SYSUT2,RECNUM=5000

 FLMALLOC IOTYPE=W,DDNAME=SYSUT3,RECNUM=5000

 FLMALLOC IOTYPE=W,DDNAME=SYSUT4,RECNUM=5000

 FLMALLOC IOTYPE=A,DDNAME=SYSUT5

 FLMCPYLB NULLFILE

 FLMALLOC IOTYPE=A,DDNAME=SYSUT6

 FLMCPYLB NULLFILE

 FLMALLOC IOTYPE=A,DDNAME=SYSTERM

 FLMCPYLB NULLFILE

 FLMALLOC IOTYPE=A,DDNAME=SYSPUNCH

 FLMCPYLB NULLFILE

 FLMALLOC IOTYPE=O,DDNAME=SYSPRINT,KEYREF=LIST,RECFM=FBA,LRECL=133, C

 RECNUM=5000,PRINT=Y,DFLTTYP=LIST

Figure 16. OS/VS COBOL Language Definition Example

Chapter 1. Defining the Project Environment 39

The FLMALLOC macros following the build FLMTRNSL macro specify each

ddname needed by the COBOL compiler. SCLM allocates the ddnames specified on

the FLMALLOC macro before invoking the translator (in this example, the COBOL

IKFCBL00 load module). The FLMALLOC parameters allow specification of the

record format (RECFM), the logical record length (LRECL), the number of records

(RECNUM), and other options. An FLMCPYLB macro specifies that a ddname be

associated with a null data set.

The language definitions must be defined to the project definition, either by

placing the language definitions directly into the project definition or having the

language definitions copied into the project definition when the project definition

is assembled. It is easier to maintain the project definition if each language

definition is kept in a separate member and copied into the project definition when

the project definition is assembled. The example project definition on page 32 uses

this method of including the language definitions.

Step 9: Assemble and Link the Project Definition

Assemble all project definitions with the SCLM macro set using the standard IBM

S/370 Assembler. Once assembled, link the object code using the standard IBM

S/370 linkage editor and store the load module into the project.PROJDEFS.LOAD

data set. All project definitions must reside in the project.PROJDEFS.LOAD data set

to allow SCLM to be invoked correctly. SCLM accesses the project definition’s load

module when SCLM is invoked. If the project definition is updated, reassembled,

and relinked while the current load module is being used, the active invocation of

SCLM will not be affected.

Make sure all project definition load modules are reentrant. Nonreentrant project

definition load modules can cause error conditions. Specify the RENT option

during link-edit. The load module name of the default project definition for a

project must match the project identifier specified on the FLMABEG macro.

Alternate project definitions can have any load module name, but all alternate

project definitions must have the same project identifier, specified on the

FLMABEG macro, as the default project definition.

The SCLM macro set performs some verification of the project definition during

assembly. When warning or error conditions are detected, the macros issue

MNOTES, which are SCLM-specific diagnostic comments. The MNOTES produced

by SCLM are listed in z/OS ISPF Messages and Codes. If the text of an MNOTE is

missing, verify that the FLMABEG macro appears at the top of the project

definition and is referenced correctly. The return code from the assembler indicates

the following:

0 The SCLM macros detected no errors.

4 The SCLM macros detected a potential error. The project definition might

be valid, but might not reflect the desired options. Review the assembler

listing for details.

8 The SCLM macros detected errors. Do not use the project definition until

you correct the errors identified in the assembler listing.

Other The assembler detected errors. Examine the assembler listing for the error

messages and consult the assembler’s user guide for additional

information. Do not use the project definition until you correct the errors

identified in the assembler listing.

40 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Assemble and Link Example

The following example illustrates JCL that assembles and links a project definition.

This example can be found in member FLM02PRJ in the data set ISP.SISPSAMP

that is shipped with SCLM.

Project Manager Scenario

This section describes the steps required to define and install an SCLM project. By

completing the steps outlined in the following sections, the project manager can

create a project that is under SCLM control. The sample project can also be defined

using the SCLM sample project utility (Option 10.7). Once the project has been

created, it can be used as a model for building other SCLM projects.

The project manager must perform all the steps described in this chapter before

developers can follow the programmer scenario described in Part 2 of this

document.

Prerequisites for Defining an SCLM Project

Before beginning the project definition phase of this activity, you must have the

following software, space, and tools available:

v z/OS V1R7.0 ISPF with SCLM installed on an MVS system.

v PL/I Optimizing Compiler IEL0AA Version 4.0 or equivalent. (Optional if

defining the project with the SCLM sample project utility.)

//jobname JOB (wkpkg,dpt,bin),’name’

//* code additional JOBCARD statements here

//*

//ASMPROJ PROC PROJID=,PROJDEF=

//*--*

//* ASSEMBLE AND LINK A PROJECT DEFINITION *

//* *

//* PROC PARAMETERS: *

//* *

//* PROJID - HIGH-LEVEL QUALIFIER FOR PROJECT *

//* PROJDEF - PROJECT DEFINITION MEMBER NAME *

//* *

//* NOTE: MODIFY SYSLIB DSNAMES TO GET THE SCLM RELEASE MACROS *

//* AND ANY LANGUAGE DEFINITIONS YOU NEED. *

//*--*

//ASM EXEC PGM=ASMA90,REGION=4000K,PARM=OBJECT

//SYSLIB DD DSN=&PROJID.PROJDEFS.SOURCE,DISP=SHR

// DD DSN=ISP.SISPMACS,DISP=SHR

//SYSPRINT DD SYSOUT=H

//SYSPUNCH DD DUMMY

//SYSIN DD DSN=&PROJID.PROJDEFS.SOURCE(&PROJDEF),DISP=SHR

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(2,2))

//SYSLIN DD DSN=&&INT,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,0)),

// DCB=(BLKSIZE=400)

//*--*

//LINK EXEC PGM=IEWL,PARM=’RENT,LIST,MAP’,REGION=512K

//SYSPRINT DD SYSOUT=H

//SYSLIN DD DSN=&&INT,DISP=(OLD,DELETE)

//OBJECT DD DSN=&PROJID.PROJDEFS.OBJ,DISP=SHR

//SYSLIB DD DSN=&PROJID.PROJDEFS.LOAD,DISP=SHR

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(2,2)),DISP=NEW

//SYSLMOD DD DISP=SHR,DSN=&PROJID.PROJDEFS.LOAD(&PROJDEF)

//SYSGO DD DISP=SHR,DSN=&PROJID.PROJDEFS.OBJ(&PROJDEF)

// PEND

//*--*

//ASMLINK EXEC PROC=ASMPROJ,PROJID=SCLM,PROJDEF=SCLM

//

Chapter 1. Defining the Project Environment 41

v Disk space to contain the data sets for the project. The project requires 265 tracks

on 3390 DASD.

v Access to data set ISP.SISPSAMP.

This data set is available as part of the ISPF product. It contains the project

definition for this scenario and other examples. Check with the person at your

site who installs ISPF to find out the name of this data set and how to allocate

it.

The member FLM01PRJ in this data set is the definition for the sample project

definition used for this scenario.

v Access to data set ISP.SISPMACS.

This macro library is shipped with the ISPF product and contains the macros

used to assemble the project definition.

v ISPF knowledge at the user level (edit and utilities are used).

v VSAM installed.

v Rudimentary VSAM knowledge. (Not required if defining the project with the

SCLM Sample Project utility.

Example Project Overview

This SCLM project contains all the required components of SCLM projects in

general and serves as a model for future projects. A description of the components

of the project follows.

Figure 17 shows three layers in the SCLM project hierarchy: development, test, and

release.

v The development layer promotes to the test layer, and the test layer promotes to

the release layer.

v The development layer is composed of the groups DEV1 and DEV2. You can

think of these groups as being assigned to two separate developers. The SCLM

hierarchy looks like Figure 17.

 Figure 18 on page 43 shows six modules in the hierarchy: FLM01MD1, FLM01MD2,

FLM01MD3, FLM01MD4, FLM01MD5, and FLM01MD6. These are the programs

that the developers edit in order to install fixes and new features.

v FLM01MD2 is written in PL/I and uses the PL/I optimization compiler.

Note: Module FLM01MD2 and the language definition for the PLI Optimizing

Compiler are not included if the project is defined using the SCLM

sample project utility.

Figure 17. Example Project Hierarchy

42 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

v The other five modules are written in S/370 Assembler. They include a member

named FLM01EQU that contains the register equates commonly used in

assembly language programs.

v The modules are compiled or assembled by the BUILD function into an

application named FLM01AP1. SCLM performs this operation using the

architecture definitions contained in the ARCHDEF data sets.

v FLM01AP1 does not directly call any language translators. It references other

architecture members. The Build process creates the load modules FLM01LD1,

FLM01LD2, FLM01LD3, and FLM01LD4.

Note: Load module FLM01LD2 is not created if the project is defined using the

SCLM sample project utility.

v FLM01AP1, FLM01SB1, and FLM01SB2 are high-level architecture members.

They do not call any language translators. FLM01LD1, FLM01LD2, FLM01LD3,

and FLM01LD4 are LEC architecture members. FLM01CMD is a CC architecture

member, and FLM01ARH is an architecture member that is directly copied into

FLM01LD3 and FLM01LD4.

Note: Architecture member FLM01LD2 is not included if the project is defined

using the SCLM sample project utility.

Note: Source module FLM01MD2 and architecture member and load module

FLM01LD2 are not included if the project was defined using the SCLM

sample project utility (Option 10.7).

Figure 18. Example Project Architecture

Chapter 1. Defining the Project Environment 43

Preparing the Example Project Hierarchy

Use the following steps to install the example project data sets on your system.

Follow the steps in the order listed and exactly as they are described. When you

have completed all of the steps, you will have an SCLM project database with

which you can experiment to better understand how SCLM works. If you

encounter any errors during the following steps, use the TSO, ISPF, and SCLM

messages to correct the problem. You can also define the sample project using the

SCLM Sample Project utility (Option 10.7).

Note: This is the project that uses sample FLM01PRJ.

In the descriptions that follow, the default naming convention

(PROJECT.GROUP.TYPE) is used. Assume for these examples that the project name

is PROJ1. If you use a different name, be sure to inform those users who plan to

complete the programmer scenario.

 1. Sign on to TSO.

 2. At the READY prompt, start ISPF.

 3. Using the ISPF Data Set Utility, allocate the following partitioned data set with

space in blocks (10,50), with 10 directory blocks, and with record format FB,

LRECL 80:

 PROJ1.PROJDEFS.SOURCE

This partitioned data set will contain the source code for the library structure

as defined in the project definition.

 4. Using the ISPF Data Set Utility, allocate the following partitioned data set with

space in blocks (10,50), with 10 directory blocks, and with record format FB,

LRECL 80:

 PROJ1.PROJDEFS.OBJ

This partitioned data set will contain the object code for the library structure

as defined in the project definition.

 5. Using the ISPF Data Set Utility, allocate the following partitioned data set with

space in blocks (10,50), with 10 directory blocks, and with record format U,

LRECL 0, BLKSIZE 6144:

 PROJ1.PROJDEFS.LOAD

This partitioned data set will contain the load module for the library structure

as defined in the project definition. This member is named PROJ1.

Note: Depending on the ISPF configuration for your site, you might receive

warning or error messages when attempting to edit an SCLM project

using the ISPF editor.

 6. Use the ISPF Move/Copy Utility to copy the following members from

ISP.SISPSAMP into PROJ1.PROJDEFS.SOURCE: FLM01ASM, FLM01PLI,

FLM01PRJ, FLM01SCR, FLM01370, FLM02ALL, and FLM02ACT.

 7. Member FLM02ALL of PROJ1.PROJDEFS.SOURCE is a background job that

allocates all of the data sets needed for this example application. You must

provide a job card and change any other information that is specific to your

location; for example, change all the occurrences of USERID to PROJ1 and

alter the job card. After you have made these changes, submit the job.

If this job allocates all the required data sets, you can skip to Step 9. Use the

ISPF Data Set List Utility to determine whether the data sets were allocated.

If the required data sets have not been allocated, you can allocate them by

following Step 8.

44 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

8. If Step 7 fails, or if you choose not to use the FLM02ALL JCL member, follow

these steps to allocate the required data sets.

a. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (10,50), with 10 directory blocks, and with record

format FB, LRECL 80:

 PROJ1.DEV1.SOURCE

 PROJ1.DEV2.SOURCE

 PROJ1.TEST.SOURCE

 PROJ1.RELEASE.SOURCE

These partitioned data sets will contain the source code for the project.

b. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (10,50), with 10 directory blocks, and with record

format FB, LRECL 80:

 PROJ1.DEV1.ARCHDEF

 PROJ1.DEV2.ARCHDEF

 PROJ1.TEST.ARCHDEF

 PROJ1.RELEASE.ARCHDEF

These partitioned data sets will contain the architecture definition for the

project.

c. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (30,100), with 10 directory blocks, and with record

format VB, LRECL 137:

 PROJ1.DEV1.SOURCLST

 PROJ1.DEV2.SOURCLST

 PROJ1.TEST.SOURCLST

 PROJ1.RELEASE.SOURCLST

These partitioned data sets will contain the listings from the compilations

and assemblies of the modules.

d. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (15,50), with 10 directory blocks, and with record

format FB, LRECL 80:

 PROJ1.DEV1.OBJ

 PROJ1.DEV2.OBJ

 PROJ1.TEST.OBJ

 PROJ1.RELEASE.OBJ

These partitioned data sets will contain the object code from the

compilations and assemblies of the modules.

e. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (7,13), with 10 directory blocks, and with record

format U,LRECL 0, BLKSIZE 6144:

 PROJ1.DEV1.LOAD

 PROJ1.DEV2.LOAD

 PROJ1.TEST.LOAD

 PROJ1.RELEASE.LOAD

These partitioned data sets will contain the load modules from the

link-edits of the modules.

f. Using the ISPF Data Set Utility, allocate the following partitioned data sets

with space in blocks (5,20), with 10 directory blocks, and with record

format FB, LRECL 121:

 PROJ1.DEV1.LMAP

 PROJ1.DEV2.LMAP

 PROJ1.TEST.LMAP

 PROJ1.RELEASE.LMAP

These partitioned data sets will contain the load maps from the link-edits

of the modules.

Chapter 1. Defining the Project Environment 45

9. Using the ISPF Library Utility, rename member FLM01PRJ in

PROJ1.PROJDEFS.SOURCE to PROJ1. This member contains the source code

for the project definition for PROJ1.

10. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(PROJ1). Change all

occurrences of USERID to PROJ1.

11. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLM01ASM). Change all

system macro library references to the library of macros at your location.

You must change the members FLM01PLI, FLM01SCR, and FLM01370 so that

libraries, assemblers, and assembler options match the libraries and products

in use at your location. The changes are specified in the samples delivered.

Note: If you make changes to these members after Step 14 while installing

this example project, reassemble and relink the data set

PROJ1.PROJDEFS.SOURCE(PROJ1). If you are not sure this step is

required, reassemble and relink.

12. Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLM02ACT). Be sure that the

job card contains valid accounting information. Change all occurrences of

USERID to PROJ1.

This member contains JCL that constructs the VSAM cluster used to contain

the accounting information used by SCLM. You also need to alter the volumes

for IDCAMS for your location, and you might need to make additional

changes to conform to requirements at your location.

13. Submit the JCL in PROJ1.PROJDEFS.SOURCE(FLM02ACT). You know that

your job has completed successfully when the PROJ1.ACCOUNT.FILE VSAM

cluster is created.

This is the VSAM data set that contains the SCLM accounting information for

the project. This job deletes the cluster and then creates the cluster. Because

the cluster does not exist the first time you submit the job, you receive a

return code of 8 in the listing data set.

14. Assemble PROJ1.PROJDEFS.SOURCE(PROJ1) using either ISPF Foreground

Assembler (option 4.1) or the sample JCL in “Assemble and Link Example” on

page 41.

Be sure that the SCLM macro library used at your location is in the

concatenation sequence for the libraries used by the assembler. Specify the

macro library in the Additional Input Libraries field on the Foreground

Assembly panel.

Look at the listing and confirm that no statements were flagged.

15. Use the ISPF Foreground Linkage Editor to link-edit

PROJ1.PROJDEFS.OBJ(PROJ1). This constructs the load module

PROJ1.PROJDEFS.LOAD(PROJ1) that is executed by SCLM to control the

library.

Verify that the link occurred without errors.

16. Use the ISPF Move/Copy Utility to copy the following members from

ISP.SISPSAMP into PROJ1.DEV1.SOURCE (these are the source members for

the application and are moved into PROJ1.RELEASE.SOURCE later):

FLM01EQU, FLM01MD1, FLM01MD2, FLM01MD3, FLM01MD4, FLM01MD5,

and FLM01MD6.

17. Use the ISPF Move/Copy Utility to copy the following members from

ISP.SISPSAMP into PROJ1.DEV1.ARCHDEF (these are the architecture

definition members and are moved into PROJ1.RELEASE.ARCHDEF later):

FLM01AP1, FLM01ARH, FLM01CMD, FLM01LD1, FLM01LD2, FLM01LD3,

FLM01LD4, FLM01SB1, and FLM01SB2.

46 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Understanding the Sample Project Definition

This section examines the project definition used for the library in the sample

project. Typically, the project manager is responsible for developing and

maintaining the project definition.

1. Select the View option from the SCLM Main Menu and type:

 PROJ1 in the Project field

DEV1 in the Group field

Press Enter.

Type ’PROJ1.PROJDEFS.SOURCE(PROJ1)’ in the Data Set Name field, and press

Enter to examine the member that contains the project definition for PROJ1.

The macros are:

 FLMABEG FLMABEG initializes the project definition by defining the project name

as PROJ1.

FLMTYPE FLMTYPE defines each type. The type values are

ARCHDEF architecture definitions

SOURCE source code

SOURCLST listings from compilers and assemblers

OBJ object code

LMAP load module maps

LOAD executable load modules

The type names were chosen arbitrarily for this sample project.

FLMGROUP FLMGROUP defines each group. The PROMOTE keyword defines the

library structure. Note that DEV1 and DEV2 are promoted to TEST and

TEST is promoted to RELEASE.

FLMCNTRL FLMCNTRL identifies the default VSAM data sets for the project. The

VSAM data sets store library control information about the members in

the project hierarchy.

COPY COPY identifies members to be copied into the project definition. The

members identified are the architecture definition language, assembler

language, PL/I language, link-edit language, and SCRIPT language

definitions.

FLMAEND FLMAEND ends the project definition.

An additional developer, DEV3, can be added with another FLMGROUP

macro, as shown in the following example:

DEV3 FLMGROUP AC=(P),KEY=Y,PROMOTE=TEST

The project definition specifies the names of the partitioned data sets used by

the project (for example, PROJ1.DEV1.SOURCE), the library structure for the

groups (for example, DEV1 members are promoted to TEST), and the languages

to be used (for example, architecture definition, ASM, PL/I, and link-edit).

2. View the PROJ1.PROJDEFS.SOURCE members:

 FLM01ASM ASM language definition

FLM01PLI PLIO language definition

FLM01370 linkage editor language definition

Chapter 1. Defining the Project Environment 47

Note the following points about these members:

 FLMSYSLB This macro can be used to define a set of libraries that contain project

and/or system macros or includes.

FLMLANGL This macro specifies the language identifier.

FLMTRNSL This macro is used once for each translator to be invoked for a language.

The SCLM parser is invoked when the keyword FUNCTN specifies

PARSE. The SCLM parser stores statistics (for example, lines-of-code

counts) and dependency information (for example, includes and copy

statements).

The build translator is invoked when the keyword FUNCTN specifies

BUILD. In FLM01370, the linkage editor IEWL is invoked. The build fails

unless the return code is equal to, or less than, the value specified by the

keyword GOODRC (0 in this example).

FLMALLOC This macro is used to allocate data sets and ddnames required by

translators.

Preparing the Example Project Data

The following steps prepare the example project data. You should follow the steps

in the order listed and exactly as they are described. When you have completed all

of the steps, all necessary data will reside at the RELEASE group. At this point,

you or other SCLM users can use the data to experiment with and understand

SCLM.

 1. Select the SCLM option from the ISPF Primary Option panel.

 2. Select the Utilities option from the SCLM Main Menu. Type:

 PROJ1 in the Project field

DEV1 in the Group field

Leave the Alternate field blank.

 3. From the Utilities panel, select the Migration option. Type:

 SOURCE in the Type field

FLM01MD2 (the

PL/I module)

in the Member field

1 in the Mode field

PLIO in the Language field

1 in the Process field

1 in the Messages field

4 in the Listings field

Press Enter to begin processing. The migration utility registers new modules

(in this case, FLM01MD2) into an SCLM library by creating accounting records

for them.

 4. When the migration is complete, you receive the message MIGRATION

UTILITY COMPLETED with RETURN CODE = 0. The Migration Utility panel

reappears. Type:

 * in the Member field

ASM in the Language field

Press Enter to begin processing.

48 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Notice that you did not have to type EX on the command line or re-enter a

value in the Process field. The value is carried from panel to panel and is

maintained as is until you change it.

The Migration Utility registers the SCLM accounting information for the

remaining new modules (in this example, all are assembler language

modules). Each time you use the Migration Utility, you can only migrate

modules written in the same language. This example migrates FLM01MD2

first. After its migration, the other modules can be referenced as a group by

using the asterisk (*). Because FLM01MD2 was migrated first, SCLM does not

migrate it again when an * is specified.

 5. When the migration is complete, you receive the message MIGRATION

UTILITY COMPLETED with RETURN CODE = 0. The Migration Utility panel

reappears. Type:

 ARCHDEF in the Type field

* in the Member field

ARCHDEF in the Language field

Press Enter to begin processing.

 6. Return to the SCLM Main Menu. Select the Build option and press Enter.

 7. On the Build panel, type:

 DEV1 in the Group field

ARCHDEF in the Type field

FLM01AP1 in the Member field

/ (slash) in the Error Listings only field

1 in the Mode field

2 in the Scope field

1 in the Messages field

1 in the Report field

3 in the Listings field

Press Enter. All modules in the project are assembled or compiled. SCLM

updates the accounting information to indicate that a build operation was

performed on each module. The Build Messages and Build Report reappears.

The build should complete with a RETURN CODE = 0. The Build panel

reappears.

If all of the site-dependent changes to the system macro library references

were not made in 10 on page 46, build errors can occur during this step. If

this happens, correct the macros, reassemble and link-edit the project

definition, and repeat this step.

 8. Return to the SCLM Main Menu. Select the Promote option and press Enter.

 9. On the Promote panel, type:

 DEV1 in the From Group field

ARCHDEF in the Type field

FLM01AP1 in the Member field

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

Press Enter. SCLM copies all members for all types at the DEV1 group to the

TEST group and then purges all members from the DEV1 group. The Promote

Chapter 1. Defining the Project Environment 49

Messages and Promote Report appears. The Promote should complete with a

RETURN CODE = 0. The Promote panel reappears.

10. On the Promote panel, type:

 TEST in the From Group field

ARCHDEF in the Type field

FLM01AP1 in the Member field

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

EX on the command line

Press Enter. SCLM copies all members for all types at the TEST group to the

RELEASE group and then purges all members from the TEST group. The

Promote Messages and Promote Report appears. The Promote should

complete with a RETURN CODE = 0. The Promote panel reappears.

All of the modules are located in the RELEASE group, and the SCLM example

project, PROJ1, is now ready to use. This scenario illustrates the status of a current

release of a product that does not have any maintenance, test, or development

activities underway.

50 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 2. User Exits

SCLM provides a number of exit points that you can use to customize SCLM

processing or to integrate SCLM with other products. SCLM does not provide the

user exit routines to be invoked at these exit points. You can specify your own user

exit routines in the project definition using the user exit parameters on the

FLMCNTRL macro.

There can be performance implications associated with the specification of an exit

routine depending on the processing performed by the exit routine. You can write

a user exit routine in any language, including REXX. The exit routine can use any

of the SCLM services to retrieve additional information that is not returned by the

exit.

Writing and compiling a program to be reentrant, then specifying RENT and REUS

on the link-edit makes the invocation of the routine more efficient.

Table 6 lists the exits supplied by SCLM, along with the FLMCNTRL parameter

used to specify an associated user exit routine. The “Initial” and “Verify” exits are

invoked before any real processing (change to data) occurs, and can be used to

perform tasks such as verifying a user’s authority to perform a given function.

The Promote Copy, Promote Purge, and all “Notify” exits are invoked after

processing has completed, and can be used to perform tasks such as putting an

entry into a log file, generating a report, or sending notification to a specified set of

users.

All of these exit points can be used to integrate SCLM with other products as well

as to enable customized processing. For example, a Verify Change Code Exit

routine might be used to query an external change management product to ensure

that an open problem request exists for a change being made, and that the user

making the change is authorized to do so. The SCLM sample bridge to Tivoli

Information Management is an example of this type of exit routine.

The following are the available exits, along with the FLMCNTRL parameters used

to specify an associated user exit routine.

 Table 6. Exits and Exit Routine Specifications

Exit Exit Routine

Specification

When Invoked

Verify Change

Code Exit

CCVFY v At the start of an SCLM Edit session:

– In SCLM Edit (option 2) before the member list is

displayed (note that in this case, no member name

is passed to the exit)

– In SCLM Edit (option 2), on entry to edit of a

member if the member name is specified explicitly

– In the Library utility (3.1), on entry to edit of a

member

v When Change Code or Language is changed in

SPROF

v By the EDIT service.

© Copyright IBM Corp. 1990, 2005 51

Table 6. Exits and Exit Routine Specifications (continued)

Exit Exit Routine

Specification

When Invoked

Save Change

Code Exit

CCSAVE v After a member has been saved, but before SCLM

accounting information is updated for the member

v By the Migrate (3.3) utility

v By the EDIT, MIGRATE, SAVE, and STORE services

Change Code

Verification Exit

VERCC v At the start of an SCLM Edit session:

– in SCLM Edit (option 2) before the member list is

displayed (note that in this case, no member name

is passed to the exit)

– in SCLM Edit (option 2), on entry to edit of a

member if the member name is specified explicitly

– in the Library utility (3.1), on entry to edit of a

member

v When Change Code is changed in SPROF

v By the Migrate (3.3) and Import (3.7) utilities

v By the EDIT, IMPORT, MIGRATE, SAVE, and STORE

services

Notes:

1. If VERCC is present in PROJDEFS, the Change Code

cannot be blank when a member is saved.

2. VERCC has been superseded by CCVFY and

CCSAVE. VERCC is retained only for backward

compatibility.

Build Initial Exit BLDINIT At the beginning of Build before any verification or

processing occurs

Build Notify Exit BLDNTF or

BLDEXT1

After Build processing completes

Promote Initial

Exit

PRMINIT At the beginning of Promote before any verification or

processing occurs

Promote Verify

Exit

PRMVFY or

PRMEXT1

At the end of the Verification phase of Promote, but

before the Copy and Purge steps are processed

Promote Copy

Exit

PRMCOPY or

PRMEXT2

At the end of the Copy phase of Promote, but before the

Purge step is processed

Promote Purge

Exit

PRMPURGE

or PRMEXT3

At the end of Promote after the Verification, Copy, and

Purge phases have all been completed

Audit/Version

Delete Verify

Exit

AVDVFY After the input parameters have been verified for an

audit record and version, but before the record is deleted

Audit/Version

Delete Notify

Exit

AVDNTF After the audit record has been deleted

Delete Initial

Exit

DELINIT v By the Delete from Group utility, before delete

processing begins

v By the DELGROUP service, before delete processing

begins

52 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

Table 6. Exits and Exit Routine Specifications (continued)

Exit Exit Routine

Specification

When Invoked

Delete Verify

Exit

DELVFY v By the Library utility, after the input parameters have

been verified but before the member is deleted

v By the DELETE service, after the input parameters

have been verified but before the member is deleted

Delete Notify

Exit

DELNTF v After delete processing has completed for the Delete

from Group utility or DELGROUP service

v After delete processing has completed for the Library

Utility Delete option, or the DELETE service

Specify the Change Code Verification Routine

SCLM provides three exits you can use for verifying change codes, integrating

with change management systems, or practically any other Edit, Migrate, Save, or

Store processing you might want to perform:

v The Verify Change Code exit (CCVFY) enables you to verify a change code, a

language, a user id, or other values. The exit routine is invoked at Edit

verification and SPROF processing. It is invoked during SPROF processing when

either the language or the change code has changed. A blank change code is

acceptable. A nonzero return code from the exit routine stops processing

immediately.

v The Save Change Code exit (CCSAVE) occurs before SCLM writes accounting

data to the accounting data set for Edit, Migrate, Save, or Store processing. The

routine is invoked during Save. This includes Edit save processing, the Migrate

Utility, and the Edit, Store, Save, and Migrate services. A blank change code is

acceptable. A nonzero return code from the exit routine stops processing

immediately.

v The Change Code Verification exit (VERCC) is useful for verifying change

records. A nonblank change code is required. If you supply this routine to

SCLM, it is used by the SCLM Editor, Migration, and Import utilities, as well as

the Edit, Store, Save, Import, and Migrate services.

When SCLM invokes the change code verification routine just prior to the edit,

SCLM ignores nonzero return codes and allows the edit to begin. If the change

code verification routine does not have all the information it needs, the

verification routine should return a return code of 8, and the change code

verification routine will be invoked again when the member is processed. When

a verification routine fails during a save, you have two options:

– You can use the CREATE edit command to make a non-SCLM-controlled

copy of the editing session and then use the migrate utility to bring the

member back under SCLM control.

– You can use SPROF from SCLM Edit to change/add the change code.

You can specify any or all of these routines for your project. If you specify a

change code verification exit and a verify or save change code exit routine (or

both), then the change code verification exit routine is invoked first. The verify or

save change code exit routine is only invoked if the change code verification

completes successfully. The exception is during SPROF processing where the verify

change code exit routine is called without first invoking the change code

verification exit routine when only the language has changed.

Chapter 2. User Exits 53

|
|

All three of these exit routines are invoked in the same way.

SCLM passes a string of up to eight parameters separated by commas. The

parameter list can include one list of user-specified options followed by up to

seven SCLM parameters (see Table 7). Register 1 contains the address of the input

data. The first halfword of the input data is the length of the input string.

Immediately following the halfword length is the input parameter string. The

return code from the routine is the only parameter passed back. The return code is

returned in Register 15. SCLM allows a member to be edited or saved only if it

receives a return code of 0 from the exit routine. SCLM informs you if it detects a

nonzero return code.

A project can use any combination of the parameters to determine whether an

update should be permitted. Table 7 explains the format and description of the

parameters passed from SCLM to all change code verification routines.

 Table 7. Initial and Save Change Code Exit Routine Parameters

OPTION LIST Up to 255-character (including delimiters) parameters specified on the

FLMCNTRL macro using the CCVFYOP for options to the verify change

code exit routine and CCSAVOP for those passed to the save change

code exit routine. Delimit this string so that the SCLM parameters that

follow can be identified by the exit routine.

GROUP The 8-character name of the group in which the member is being created

or modified (capitalized, left-aligned, blank-padded).

TYPE The 8-character name of the member type being created or modified

(capitalized, left-aligned, blank-padded).

MEMBER The 8-character name of the member that is being created or modified

(capitalized, left-aligned, blank-padded).

LANGUAGE The 8-character name of the language specified for the member

(capitalized, left-aligned, blank-padded).

USERID The 8-character user ID of the developer performing the modification

(capitalized, left-aligned, blank-padded).

AUTHCODE The 8-character authorization code for the member (capitalized,

left-aligned, blank-padded).

CHANGE CODE The 8-character change code that has been entered (capitalized,

left-aligned, blank-padded).

Change Code Verification Routine Example

The following example shows a simple program written in REXX to perform

minimal verification. This routine verifies that the change code entered on the edit

panel, or on the SPROF screen exists in a change code verification file. A return

code of 0 indicates that the change code is valid. A return code of 8 indicates that

the change code failed verification. The example assumes that the option list is

empty.

Figure 19 on page 55 calls the REXX Parse function to separate the string of input

parameters. The example then allocates the verification file and loops through the

lines in the file until a matching change code is found. If one is found the program

is left immediately, otherwise a return code of 8 tells SCLM to fail verification.

54 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

This exit will be executed by specifying the following FLMCNTRL macro in the

project definition:

FLMCNTRL ACCT=SSP.ACCOUNT.FILE, C

 MAXVIO=50000, C

 CCVFY=CCVERIFY, C

 CCVFYDS=SSP.PROJDEFS.REXX, C

 CCVFYCM=TSOLNK

/* REXX **/

/* CCVERIFY - CHANGE CODE VERIFICATION USER EXIT */

/***/

/* INPUTS: */

/* PARMS - */

/* OPTION LIST - OPTIONS LIST (IF SPECIFIED ON FLMCNTRL). */

/* GROUP - GROUP WHERE THE CHANGE IS BEING MADE. */

/* TYPE - TYPE CONTAINING THE MEMBER BEING CHANGED. */

/* MEMBER - MEMBER BEING CHANGED. */

/* LANGUAGE - LANGUAGE OF MEMBER BEING CHANGED. */

/* USERID - USER ID PERFORMING THE CHANGE. */

/* AUTHCODE - AUTHORIZATION CODE OF THE MEMBER. */

/* CHANGE CODE - CHANGE CODE BEING USED FOR THE CHANGE. */

/***/

/* OUTPUTS: */

/* RETURN_CODE - RETURN CODE */

/* 0 - CHANGE CODE IS VALID. */

/* 8 - CHANGE CODE IS INVALID. */

/* 16 - CHANGE CODE FILE OPEN ERROR */

/***/

/* PROCESS: */

/* THIS PROGRAM VERIFIES THAT THE CHANGE CODE ENTERED FOR THE */

/* MEMBER MATCHES ONE ON A VALID CHANGE CODE FILE */

/***/

 ARG parm /* Parse arguments into variable parm */

 PARSE UPPER VAR parm group ’,’ type ’,’ member ’,’ lang ’,’,

 userid ’,’ authcode ’,’ ccode

 group = Strip(group,’T’)

 type = Strip(type,’T’)

 member = Strip(member,’T’)

 lang = Strip(lang,’T’)

 userid = Strip(userid,’T’)

 authcode = Strip(authcode,’T’)

 ccode = Strip(ccode,’T’)

 Address TSO "ALLOC FI(CCODEDS) DA(’SSP.SCLM.CCIDVAL’) SHR"

 "EXECIO * DISKR "CCODEDS" (STEM ccline. FINIS)"

 If rc <> 0 Then do

 Say ’Error reading change code file’

 Exit (16)

 End

 Address TSO "FREE FI(CCODEDS)"

 Do I = 1 To ccline.0

 If SUBSTR(ccline.I,1,8) = ccode then Exit (0)

 End

 Say "Invalid change code"

Exit (8)

Figure 19. Change Code Verification User Exit

Chapter 2. User Exits 55

Specify the Build and Promote User Exit Routines

Two user exits can be specified for build. SCLM invokes the initial build user exit

before any build processing begins. The build notify user exit is invoked at the end

of a build.

Four user exits can be specified for promote. SCLM invokes the initial promote

user exit before any promote processing begins. SCLM invokes the promote

verification user exit, the promote copy user exit, and the promote purge user exit

routines at the end of the promote verification, copy, and purge phases,

respectively.

Build and promote user exits are defined to the project definition using the

following parameters on the FLMCNTRL macro.

 Initial Build User Exit BLDINIT

Build Notify User Exit BLDNTF or BLDEXT1 (old format)

Initial Promote User Exit PRMINIT

Promote Verify User Exit PRMVFY or PRMEXT1 (old format)

Promote Copy User Exit PRMCOPY or PRMEXT2 (old format)

Promote Purge User Exit PRMPRURGE or PRMEXT3 (old format)

Build and Promote User Exit Routine Requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine,

followed by a string of up to eleven parameters separated by commas. The

parameter list can include one list of user-specified options followed by up to ten

SCLM parameters (see Table 8 on page 57). The address of this input data is

contained at the address stored in register 1. The first halfword of the input data is

the number of characters comprising the input data string. Immediately following

this halfword length is the input parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A

return code of zero is considered to be successful and processing continues. In

most situations a nonzero return code from the user exit routine causes build or

promote to end with a return code 8. Whether or not processing continues after the

user exit depends on the return code value passed back by the user exit routine

and the exit routine being invoked. Nonzero return code values from user exit

routines are handled in the following ways:

v Both the build notify user exit (BLDNTF) and the promote purge phase user exit

(PRMPURGE) can return any value as processing has already been completed at

the time the exit is invoked. SCLM will, however, set a return code of 4 for the

final SCLM return code if a nonzero return code is set in the user exit.

v Any nonzero value returned by the initial build user exit (BLDINIT) or the

initial promote user exit (PRMINIT) causes processing to stop.

v The processing that occurs after the promote verification phase user exit

(PRMVFY) has been invoked depends on the promote mode in effect. In

conditional mode, a return code greater than 4 causes promote processing to

stop. In unconditional mode, any return code other than 20 allows promote

processing to continue.

v The processing that occurs after the promote copy phase user exit (PRMCOPY)

has been invoked depends only on the return code value returned. Any return

code other than 20 allows normal promote processing to continue.

56 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 8 explains the format and description of the parameters passed from SCLM

to all build and promote user exits.

 Table 8. User Exit Parameters

OPTION LIST Up to 255 characters, including delimiters (blank padding is not

performed for this parameter). Parameter is specified in the FLMCNTRL

macro using macro parameters BLDINIOP, BLDNTFOP, PRMINIOP,

PRMVFYOP, PRMCPYOP, and PRMPRGOP. Delimit this string so that

the SCLM parameters that follow can be identified by the user exit

routine.

‘xxxxxxxx’ An 8-character literal value indicating the exit type (capitalized,

left-aligned, blank-padded). Valid types are:

BINITIAL Build Initial (BLDINIT)

BUILD Build Notify (BLDNTF)

PINITIAL Promote Initial (PRMINIT)

PVERIFY Promote Verify (PRMVFY)

PCOPY Promote Copy (PRMCOPY)

PPURGE Promote Purge (PRMPURGE).

PROJECT The 8-character name of the project (capitalized, left-aligned,

blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-aligned,

blank-padded).

USERID The 8-character value of the user’s logon ID (capitalized, left-aligned,

blank-padded).

FROM GROUP The 8-character name of the group (capitalized, left-aligned,

blank-padded). The group is the “from group” for the promote and the

“build group” for the build.

TYPE The 8-character name of the type (capitalized, left-aligned,

blank-padded).

MEMBER The 8-character name of the member (capitalized, left-aligned,

blank-padded).

SCOPE The 8-character name of the scope (capitalized, left-aligned,

blank-padded). Valid scopes are as follows:

Build scope Limited, normal, subunit, extended.

Promote scope Normal, subunit, extended.

MODE The 13-character name of the mode (capitalized, left-aligned,

blank-padded). Valid modes are as follows:

Build mode Forced, conditional, unconditional, and report only.

Promote mode Conditional, unconditional, and report.

TO GROUP The 8-character name of the group (capitalized, left-aligned,

blank-padded). The group is the “to-group” for the promote exit

routines. This parameter is blank for the build exit routine.

Build allocates the following ddnames for internal use: BLDEXIT; BLDLIST;

BLDMSGS; BLDREPT

Promote allocates the following ddnames for internal use: COPYERR; PROMEXIT;

PROMMSGS; PROMREPT

Chapter 2. User Exits 57

Use of these names in user exit routines can cause conflicts. At the end of an exit

routine, free only those ddnames explicitly allocated by the exit routine.

Build and Promote User Exit Output Data Sets

If you specify a build notify or promote verify, copy, or purge user exit routine,

SCLM generates a sequential data set containing a record for each member

changed or verified by build or promote. This data set is not generated for the

initial build or initial promote user exits. Verified members are those eligible for

promotion during the promote verification phase. Changed members for build are

those members produced due to translator calls. Changed members for promote

are those members copied or purged. SCLM puts new data in the data set for the

invocation of each exit. User exit routines can use the output data set when called,

but the data set is rewritten for later exits and is deleted when the SCLM processor

ends.

The data definition names (ddnames) for build and promote exit output data sets

are BLDEXIT and PROMEXIT respectively. The attributes of the output data sets

are the same for all the exit routines:

 RECFM FB

BLOCK SIZE 3200

LRECL 160

The format of the data set is the same for every exit. The data set contains three

8-character fields and one 16-character status field. A blank separates all fields. The

following list defines the fields generated for every build and promote exit routine:

 Table 9. User Exit Output Data Set Format

GROUP Specifies the 8-character name of the group beginning in column 1.

TYPE Specifies the 8-character name of the type beginning in column 10.

MEMBER Specifies the 8-character name of the member beginning in column 19.

STATUS Specifies the status beginning in column 28.

BUILT/DELETED

Indicates if the member was built or if it was an obsolete output that

was deleted. This field is written by BLDNTF.

PROMOTABLE/NOT PROMOTABLE

Indicates if the member is eligible for promotion. This field is written

by PRMVFY.

COPY SUCCESSFUL/COPY FAILED/COPY NOT ATTEMPTED

Indicates if the member was copied. This field is written by

PRMCOPY. COPY NOT ATTEMPTED can be issued when a promote

to a non-key group is performed of a NOT PROMOTABLE member.

PURGE SUCCESSFUL/PURGE FAILED

Indicates if the member was purged. This field is written by

PRMPURGE.

The following example shows build user exit output:

 USER1 TYPE1 MEMBER1 BUILT

 USER1 TYPE MEM1 BUILT

 USER1 TYPE2 MEMBER5 BUILT

58 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Specify the Audit Version Delete User Exit Routine

There are two audit version delete exit points in SCLM: audit version delete verify

(AVDVFY) and audit version delete notify (ADVNTF). These exits are invoked

when an audit record or an audit record and its associated version are deleted

using either the SCLM Audit and Version Utility, Version Selection dialog (ISPF

Option 10.3.8), or the VERDEL service interface.

The use of the audit version delete exits is optional. SCLM does not provide the

user exit routines to be invoked by these exit points.

The audit version delete verify exit is invoked after the initial verification of the

inputs is done, but before the actual deletion of the audit and version data takes

place.

The audit version notify exit is invoked after the deletion of the audit and version

data has been attempted (in the case of a failure) or performed (when the deletion

is successful).

These exits can be used to perform logging functions or additional verification,

send notifications or coordinate processing with non-SCLM tools.

Audit Version Delete User Exit Routine Requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine,

followed by a string of up to eleven parameters separated by commas. The

parameter list can include one list of user-specified options followed by up to ten

SCLM parameters (see Table 10). The address of this input data is contained at the

address stored in register 1. The first halfword of the input data is the number of

characters comprising the input data string. Immediately following this halfword

length is the input parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A

return code of zero is considered to be successful and processing continues. A

nonzero return code from the first audit version delete exit verify routine

(AVDVFY) causes processing to end and the requested audit and version

information is not deleted. The second audit version delete notify user exit routine

(AVDNTF) can pass back any value in register 15 and processing continues because

the delete has already been performed.

Table 10 explains the format and description of the parameters passed from SCLM

to all audit version delete user exits.

 Table 10. User Exit Parameters

OPTION LIST Up to 255 characters, including delimiters (blank padding is not

performed for this parameter). Parameter is specified in the FLMCNTRL

macro using macro parameters AVDVFYOP and AVDNTFOP. Delimit

this string so that the SCLM parameters that follow can be identified by

the user exit routine.

‘xxxxxxxx’ An 8-character literal value indicating the exit type (capitalized,

left-aligned, blank-padded). Valid types are:

ADVERIFY Audit Version Delete Verify

ADNOTIFY Audit Version Delete Notify

PROJECT The 8-character name of the project (capitalized, left-aligned,

blank-padded).

Chapter 2. User Exits 59

Table 10. User Exit Parameters (continued)

LIBDEF The 8-character name of the project definition (capitalized, left-aligned,

blank-padded).

USERID The 8-character value of the user’s logon ID (capitalized, left-aligned,

blank-padded).

GROUP The 8-character name of the group (capitalized, left-aligned,

blank-padded) for the audit record or audit record and version.

TYPE The 8-character name of the type (capitalized, left-aligned, blank-padded)

for the audit record or audit record and version.

MEMBER The 8-character name of the member (capitalized, left-aligned,

blank-padded)for the audit record or audit record and version.

DATE The 10-character NLS formatted date with 4-character year for the audit

record or audit record and version.

TIME The 11-character time for the audit record or audit record and version.

The format for the time is HH:MM:SS.hh or HH:MM:SS,hh. In the

format, HH is the hour from a 24-hour clock, MM is the minutes, SS is

the seconds, and hh is the hundredths of a second.

VERSION

MEMBER NAME

The 8-character version member name (capitalized, left-aligned,

blank-padded) indicates whether the requested audit record has an

associated version. When an associated version exists, this value is the

same as the member name. This value is blank when the requested audit

record does not have an associated version.

Specify the Delete User Exit Routine

There are three delete exit points in SCLM: an initial delete exit (DELINIT), a

delete verify exit (DELVFY), and a delete notify exit (DELNTF).

The initial delete exit is invoked only for the DELGROUP service or Delete from

Group dialog (ISPF Option 10.3.9). It is invoked during initialization and before

any processing is done. The ″group″ (for the Delete from Group service only),

″type″, and ″member name″ values can contain pattern symbols. The purpose of

this exit is to enable verification for a certain level, for example, to insure that a

user is authorized to use Delete from Group.

The delete verify exit is invoked for Library Utility Delete (ISPF Option 10.3.1) and

the Delete service. It is invoked after the input parameters have been verified, but

before any processing is performed.

The delete notify exit is invoked for Library Utility Delete, the Delete service, and

the Delete from Group dialog and service. The exit is invoked after the delete has

been attempted (in the case of failure) or performed (when the deletion succeeds).

Delete User Exit Routine Requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine,

followed by a string of up to ten parameters separated by commas. The parameter

list can include one list of user-specified options followed by up to nine SCLM

parameters (see Table 11 on page 61). The address of this input data is contained at

the address stored in register 1. The first halfword of the input data is the number

of characters comprising the input data string. Immediately following this

halfword length is the input parameter string itself.

60 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|
|
|

|

|

The user exit routine must pass back a return code value to SCLM in register 15. A

return code of zero is considered to be successful and processing continues. For the

delete verify and delete notify exit routines, any return code other than zero

indicates failure and processing ends. In the case of the delete notify exit, the

delete has already been performed.

Table 11 explains the format and description of the parameters passed from SCLM

to all delete user exits.

 Table 11. User Exit Parameters

OPTION LIST Up to 255 characters, including delimiters (blank padding is not

performed for this parameter). Parameter is specified in the FLMCNTRL

macro using macro parameters DELINTOP, DELVFYOP, and DELNTFOP.

Delimit this string so that the SCLM parameters that follow can be

identified by the user exit routine.

‘xxxxxxxx’ An 8-character literal value indicating the exit type (capitalized,

left-aligned, blank-padded). Valid types are:

DGINIT Initial Delete

DVERIFY Verify delete exit invoked for the Delete service or

Library Utility Delete

DNOTIFY Notify delete exit invoked for the Delete service or

Library Utility Delete

DGNOTIFY Notify delete exit invoked for the Delete from Group

service or dialog

PROJECT The 8-character name of the project (capitalized, left-aligned,

blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-aligned,

blank-padded).

USERID The 8-character value of the user’s logon ID (capitalized, left-aligned,

blank-padded).

GROUP The 17-character name of the group (capitalized, left-aligned,

blank-padded).

TYPE The 17-character name of the type (capitalized, left-aligned,

blank-padded).

MEMBER The 17-character name of the member (capitalized, left-aligned,

blank-padded).

FLAG The 8-character delete flag (capitalized, left-aligned, blank-padded). Valid

delete flags are ACCT, BMAP, TEXT, and OUTPUT. This value is always

TEXT for a Library Utility Delete. OUTPUT is valid only for Delete from

Group.

MODE The 8-character name of the mode (capitalized, left-aligned,

blank-padded). Valid modes are EXECUTE and REPORT. This value is

valid only for Delete from Group. A blank value is passed for the Delete

service and Library Utility Delete.

Delete from Group allocates the following ddnames for internal use: DGEXIT;

DGLIST; DGMSGS; DGREPT

Use of these names in a delete user exit routine can cause conflicts. At the end of

an exit routine, free only those ddnames explicitly allocated by the exit routine.

Chapter 2. User Exits 61

|

|
|

|

|

Delete User Exit Output Data Set

When a Delete from Group is performed and you specify a delete notify user exit

routine, SCLM generates a sequential data set containing a record for each member

for which a delete is requested. SCLM puts new data in the data set for the

invocation of each exit. The delete notify user exit routine can use the output data

set when called, but the data set is rewritten for later exits and is deleted when the

SCLM processor ends.

The default data definition name (ddname) for the delete exit output data set is

DGEXIT. The attributes of the output data set are:

 RECFM FB

BLOCK SIZE 3200

LRECL 160

The data set contains the following fields. A blank separates all fields.

 Table 12. User Exit Output Data Set Format

DATA TYPE Specifies the 8-character name of the type of data. This is equivalent to

the section headings in the Delete from Group report. Valid types are

MEMBER or BUILDMAP. MEMBER is used when an accounting record

or an accounting record and PDS member are deleted.

GROUP Specifies the 8-character name of the group beginning in column 9.

TYPE Specifies the 8-character name of the type beginning in column 18.

MEMBER Specifies the 8-character name of the member beginning in column 27.

STATUS Specifies the 19-character status beginning in column 36. Valid values

are:

DELETE SUCCESSFUL

Indicates the requested data was successfully deleted.

DELETE FAILED

Indicates an error occurred and the delete failed.

DELETE WARNING

Indicates a warning was issued. The requested data either did not

exist or was successfully deleted.

NOT ATTEMPTED

Indicates that Delete from Group was done in report mode. The

delete was not attempted.

OUTPUT Specifies the 1-character OUTPUT indicator beginning in column 56. If

the requested data was a build output, then this column contains an

asterisk (*).

The following example shows the delete user exit output that is generated when a

Delete from Group is requested:

 MEMBER USER1 TYPE1 MEMBER1 DELETE SUCCESSFUL *

User Exit Routine Example

Figure 20 on page 63 is an example program written in REXX that performs simple

promote copy user exit activity. This routine reads the promote exit file, and based

on the types of the members being promoted, copies the member to a library

outside of SCLM’s control. The exit then passes a return code of zero (0) to SCLM.

62 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

|

|

|

/* REXX */

/* PROMCPY1 - PROMOTE COPY USER EXIT */

/**/

/* INPUTS: */

/* PARMS - */

/* EXTYP - An 8-character literal value indicating the exit type */

/* Valid types are: */

/* BINITIAL Build Initial (BLDINIT) */

/* BUILD Build Notify (BLDNTF) */

/* PINITIAL Promote Initial (PRMINIT) */

/* PVERIFY Promote Verify (PRMVFY) */

/* PCOPY Promote Copy (PRMCOPY) */

/* PPURGE Promote Purge (PRMPURGE). */

/* PROJ - The 8-character name of the project */

/* PRJDF - The 8-character name of the project definition */

/* TSOUID - The 8-character value of the user’s logon ID */

/* FROMGRP - From Group or Build Group */

/* TYPE - Type containing the member being promoted. */

/* MEMBER - Member being promoted. */

/* SCOPE - The 8-character name of the scope */

/* Valid scopes are as follows: */

/* Build scope Limited, normal, subunit, extended. */

/* Promote scope Normal, subunit, extended. */

/* MODE - The 13-character name of the mode */

/* Valid modes are as follows: */

/* Build mode Forced, conditional, unconditional, */

/* and report only. */

/* Promote mode Conditional, unconditional, and report. */

/* TOGRP - The 8-character name of the group; */

/* blank for build exit */

/* */

/**/

/* OUTPUTS: */

/* RETURN_CODE - RETURN CODE */

/* 0 - All copies performed successfully. */

/* 16 - All or some copies not performed successfully */

/* 32 - Input or Output files can not be initialized */

/**/

/* PROCESS: */

/* THIS PROGRAM COPIES LOAD MODULES TO THEIR EXECUTION DATASET */

/* */

/**/

ARG PARM

/* Initialize passed parameters */

Call INIT

/* Only process when to group is production */

If togrp <> ’PROD’ then exit 0

Figure 20. Promote User Exit (Part 1 of 3)

Chapter 2. User Exits 63

/* read exit file */

"execio * diskr PROMEXIT (stem extline. finis)"

/* Process each line of the exit file */

Do i = 1 to extline.0 /* For all lines in stem variable */

 /* Extract variables from a line out of the exit file */

 parse upper var extline.i eogroup 10 eotype 19 eomember 28 eostatus

 eogroup = STRIP(eogroup)

 eotype = STRIP(eotype)

 eomember= STRIP(eomember)

 eostatus= STRIP(eostatus)

 /* If member ok continue */

 If eostatus = ’COPY SUCCESSFUL’ then

 Call Process_Member

End

EXIT max_rc

INIT:

/* Parse out variables passed to the exit routine and strip blanks */

PARSE UPPER VAR parm extyp ’,’ proj ’,’ prjdf ’,’ tsouid ’,’,

fromgrp ’,’ type ’,’ member ’,’ scope ’,’ mode ’,’ togrp

extyp = strip(extyp)

proj = strip(proj)

prjdf = strip(prjdf)

tsouid = strip(tsouid)

fromgrp = strip(fromgrp)

type = strip(type)

member = strip(member)

scope = strip(scope)

mode = strip(mode)

togrp = strip(togrp)

max_rc = 0

return

Process_Member:

/* Process each member in the exit file */

/* If the member type is to be processed setup ’TO’ dataset */

/* ’TO’ dataset for the copy is a preallocated library */

Select

 When eotype = "LOADLIB" then Do

 outdsn = "’SYS2.LOADLIB’"

 Call Perform_Copy

 End

 When eotype = "LOADCICS" then Do

 outdsn = "’SYS2.CICSLOAD’"

 Call Perform_Copy

 End

 Otherwise

 nop

End

Return

Figure 20. Promote User Exit (Part 2 of 3)

64 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The program uses the ISPF library management services to perform the copy and

as such must be invoked in SCLM in one of two ways:

1. Using the ISPLNK call method as shown below:

PRMCOPY=SELECT, C

PRMCPYCM=ISPLNK, C

PRMCPYOP=’CMD(PROMCPY1,’, C

2. From a driver exit that uses a call method of TSOLNK as follows:

Address ISPEXEC ’SELECT CMD(PROMCPY1’ parm ’)’

Perform_copy:

/* Initialize the FROM and TO datasets and perform copy */

indsn = "’"proj"."togrp"."eotype"’"

Address ISPEXEC "LMINIT DATAID(FROMDSN) DATASET("indsn")"

If rc <> 0 then do

 Say "Error on LMINIT for FROM dataset indsn return code" rc

 exit 32

End

Address ISPEXEC "LMINIT DATAID(TODSN) DATASET("outdsn")"

If rc <> 0 then do

 Say "Error on LMINIT for TO dataset indsn return code" rc

 exit 32

End

/* Copy member from SCLM prod into live dataset */

Address ISPEXEC "LMCOPY FROMID("fromdsn") FROMMEM("eomember")

 TODATAID("todsn") TOMEM("eomember") REPLACE"

If rc <> 0 then do /* If error on the Copy */

 Say "Member" eomember "can not be copied to" outdsn

 max_rc = 16

End

Else /* Member was copied successfully */

 Say eomember "has been copied to" outdsn

Return

Figure 20. Promote User Exit (Part 3 of 3)

Chapter 2. User Exits 65

66 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 3. Additional Project Manager Tasks

In addition to the tasks described in Chapter 1, “Defining the Project

Environment,” project managers can perform other tasks associated with defining

and maintaining SCLM projects. This chapter describes other areas of responsibility

in which project managers are involved. These include:

v Splitting VSAM data sets

v Backing up and recovering the project environment

v Synchronizing and maintaining accounting data sets

v Modifying the Delete from Group dialog interface

v Implementing Package Backout

Splitting Project VSAM Data Sets

You might need to split the project VSAM data sets into multiple data sets because

of security requirements, data set size, performance or changes in the way the

project is being developed. By using multiple VSAM data sets in conjunction with

flexible data set naming, cross-project support (for example, sharing common code)

can be achieved.

The following steps make up the basic process for splitting project VSAM data

sets:

1. Decide how you want to split the data sets. SCLM allows the VSAM data sets

to be split on group boundaries.

2. Back up the data from the existing VSAM data sets for those groups using the

new VSAM data sets. There are two ways to back up the data:

a. You can use the SCLM export utility to export the contents of each group to

the new data set. Because the Import utility deletes the contents of the

export data set upon a successful completion of the import, you should

make a backup of the export VSAM data sets using the IDCAMS

reproduction utility (REPRO). By using this method, you do not need to

update the contents of the PDS data sets. You only need to copy members

from those groups that will be using the new VSAM data set. This method

does not copy the audit records.

Note: Using the REPRO function of the IDCAMS utility, you can split the

audit data base at any point to create any number of smaller audit

data bases. In order to use these smaller audit data bases, create

alternate project definitions that specify the newly created audit data

bases.

b. You can use the IDCAMS REPRO utility to make a copy of each of the

VSAM data sets used by the project. This method has the advantage of

creating a backup of the project VSAM data sets. All records are copied to

the new VSAM data set. While having the copies for all groups in the new

VSAM data set is not a problem for SCLM, it does increase the size of the

data set. These records can be deleted by setting up an alternate project

definition that points only to the new VSAM data set and using the

DELGROUP service to delete the groups that are not needed in that data

set.
3. Make a backup copy of the project definition. This backup copy is needed to

delete the data from the original VSAM data sets.

© Copyright IBM Corp. 1990, 2005 67

|

4. Update the project definition to add an FLMALTC macro for the new data sets

and ALTC parameters on the groups that will be using those data sets.

5. Allocate the new VSAM data sets.

6. Assemble the new project definition.

7. Restore the data for the new VSAM data set from backup. How you do this

depends on what method you used to back up the data:

a. If you used the Export utility, use the Import utility to restore the data to

the new VSAM data sets.

b. If you used the IDCAMS REPRO utility, use the REPRO utility to restore the

data. You can do this before assembling the new project definition because

it does not use any SCLM services.
8. Test the new project definition. Here are some suggestions for testing the new

project definition:

v Edit a member at the modified group. Create a new member, and also edit

an existing member.

v Run a build from the modified group.

v Promote from the modified group.
9. Delete data from the existing VSAM data set for those groups that reference the

new VSAM data set. You can do this by using a backup copy of the old project

definition and the Delete from Group utility for each group that was moved.

If you used the method of promoting to a new group, this step is not needed.

Backing Up and Recovering the Project Environment

The important point in backing up and recovering the project environment is that

all the data remains synchronized. The project partitioned data sets contain related

data, and the control data sets contain the control information for the PDS

members. Thus, backing up and restoring the project environment means that the

project partitioned data sets and the control data sets must be backed up and

restored together.

The recommended procedure for backing up the project environment is to run a

background job when no one is working within the hierarchy. You should

determine how often to run this job. Remember that the topmost group of the

hierarchy (the production group) usually contains most of the software and is

usually frozen. You should back up the topmost groups whenever new data is

promoted into the topmost groups. The lower groups in the hierarchy are subject

to change much more often, and the code in the development groups usually

changes daily. Perform backups for the lower groups based on your project’s

requirements. Again, remember that you must back up an entire group as a unit;

this includes the project partitioned data sets and the control data sets.

Be careful when recovering a project environment. When you restore a group, it

returns to the version that was in effect when you backed it up. This change can

affect code below the restored group. Also the control data sets reflect the status of

the group when it was backed up.

Synchronizing Accounting Data Sets

The SCLM FLMCNTRL and FLMALTC macros allow you to select dual accounting

data sets to be maintained using the ACCT and ACCT2 parameters. If an

unrecoverable problem occurs with one of the primary accounting data sets, use

the following JCL to restore the primary accounting data set.

68 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

You can also use this JCL to initialize a backup data set for a project that is

currently running under SCLM. If problems occur with the backup data set, SCLM

issues warning messages. You must restore the backup data set when problems

occur.

Maintaining Accounting Data Sets

When groups or types are removed from the project definition, some accounting

information from those groups or types can remain in the VSAM data sets for that

project. In order to avoid having records that are no longer useful in the VSAM

data sets, you should use the DELGROUP service to remove the VSAM records for

any groups or types that are being removed from the project definition. This step

should be performed before the groups and types are removed from the project

definition.

If groups or types have been previously removed from the project definition, you

can create an alternate project definition that includes a definition for the removed

groups and types. This project definition can be used with the DELGROUP service

to delete any remaining VSAM records.

Modifying the Delete from Group Dialog Interface

Given the power of Delete from Group, there are some restrictions in the dialog

interface. Explanations for the restrictions and instructions for modifying the dialog

to remove such restrictions follow.

The Group field is restricted to disallow patterns. To remove this restriction:

1. Edit the panel FLMDDG#P. It is recommended that you update the DTL

version instead of the generated panel to avoid losing the changes if the panel

is regenerated. Refer to z/OS ISPF Dialog Tag Language Guide and Reference for

more information.

2. Replace the line:

<dtafld datavar=DGLEVEL usage=both

 entwidth=8 pmtwidth=12 >&lib_prompt;

with the lines:

 //jobname JOB (wkpkg,dpt,bin),’name’

 //***

 //* *

 //* JCL TO RESTORE THE PRIMARY ACCOUNTING DATA SET FROM THE *

 //* SECONDARY ACCOUNTING DATA SET. *

 //* *

 //* SPECIFY THE UNCORRUPTED DATA SET AS YOUR INPUT DATA SET *

 //* *

 //***

 //STEP1 EXEC PGM=IDCAMS

 //INPUT DD DISP=OLD,DSN=PROJ1.ACCOUNT2.FILE

 //OUTPUT DD DISP=OLD,DSN=PROJ1.ACCOUNT.FILE

 //SYSPRINT DD SYSOUT=H

 //SYSIN DD *

 REPRO INFILE(INPUT) OUTFILE(OUTPUT)

 /*

 //

Figure 21. JCL to Restore the Primary Accounting Data Set

Chapter 3. Additional Project Manager Tasks 69

|

|

<dtafld datavar=DGLEVEL usage=both

 deswidth=41 entwidth=9 pmtwidth=12 >&lib_prompt;

 <dtafldd>(Pattern can be used)

or with the lines:

<dtafld datavar=DGLEVEL usage=both

 deswidth=41 entwidth=17 pmtwidth=12 >&lib_prompt;

 <dtafldd>(Pattern can be used)

depending upon how you resolve the next restriction. They should be

consistent if patterns are allowed.

3. Edit the imbed FLMZDG#P, and replace the line:

VER(&DGLEVEL,NB,NAME)

with the line:

VER(&DGLEVEL,NONBLANK)

The Type and Member fields are restricted to 9 characters; FLMCMD and

FLMLNK allow up to 17 characters. To remove this restriction:

1. Edit the panel FLMDDG#P. It is recommended that you update the DTL

version instead of the generated panel to avoid losing the changes if the panel

is regenerated. Refer to z/OS ISPF Dialog Tag Language Guide and Reference for

more information.

2. Replace the lines:

<dtacol entwidth=8 pmtwidth=12

 deswidth=49 fldspace=11 >

with the lines:

<dtacol entwidth=17 pmtwidth=12

 deswidth=41 fldspace=11 >

The Delete mode always defaults to Report when the panel appears. To remove

this restriction, remove the following lines from the FLMZDG#P panel imbed:

&DMODE = ’REPORT’

&DMODEV = ’2’

Implementing Package Backout

This topic describes how to implement package backout.

1. Determine the TYPE (for example, ARCHPACK) to hold the package high-level

architecture members. If required allocate the appropriate data sets.

2. Update the project definition for this type to have the parameter ISAPACK=Y

on the FLMTYPE macro. When an architecture member using this type is

promoted, the package backout is invoked.

3. Determine the types of files (such as Object, load libraries) that are to be

backed up during the promotion of a package high-level architecture member.

The Project definition for these file TYPES should be updated to specify the

BACKUP=Y on the FLMTYPE macro.

4. Determine at which level (for example, production) the package backout is to

be implemented, and the group that the members will be backed up to.

In the Project definition for this level, use the BKGRP=group_name parameter on

the FLMGROUP macro to specify the group to which the members will be

backed up. This new backup group needs to be added to the project definition,

so add an FLMGROUP macro for it. Make sure the group is key. Use the group

that is being backed up as the PROMOTE= group.

For example, to back up RELEASE into a group called BACKGRP:

70 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

BACKGRP FLMGROUP AC=(P),KEY=Y,PROMOTE=RELEASE

RELEASE FLMGROUP AC=(P),KEY=Y,BKGRP=BACKGRP

5. Determine if member-level restore is to be implemented to allow individual

members to be restored instead of an entire package. If it is required, update

the FLMGROUP macro to have BKMBRLVL=Y.

6. Create the backup libraries for the TYPES you have specified with BACKUP=Y

at the levels package backout has been specified. The data sets will have the

format <project_name>.<group_name>.<ds_type>, where group_name is the value

specified on the BKGRP= parameter for each level. Allocate the backup libraries

with the same attributes as the libraries that are being backed up.

7. Determine the File type to contain the package backout details. Add the

parameter PACKFILE=Y to the Project definition for this type. The PACKFILE

flag must only be specified on one FLMTYPE in the project definition, for

example BACKUP FLMTYPE PACKFILE=Y

Allocate a library of this type at the level where BKGRP= is specified in the

FLMGROUP macro. Use the format <project_name>.<group_name>.<ds_type>,

where ds_type is the type on the FLMTYPE macro with PACKFILE=Y. Allocate

this data set with LRECL=130 and RECFM=FB.

8. Determine if package reuse is to be used. If so set ’REUSEDAY=nnnn’ on the

FLMTYPE macro that has the PACKFILE=Y specified.

9. Reassemble and link the project definitions.

Figure 22 shows a sample project definition that allows for package backout.

ARCHDEF FLMTYPE

SOURCE FLMTYPE EXTEND=MACROS

MACROS FLMTYPE

SOURCLST FLMTYPE

ARCHPACK FLMTYPE ISAPACK=Y

OBJ FLMTYPE BACKUP=Y

LMAP FLMTYPE

LOAD FLMTYPE BACKUP=Y

BACKUP FLMTYPE PACKFILE=Y ...
DEV1 FLMGROUP AC=(P,A,LONGNAME),KEY=Y,PROMOTE=TEST

DEV2 FLMGROUP AC=(P,A),KEY=Y,PROMOTE=TEST

TEST FLMGROUP AC=(P),KEY=Y,PROMOTE=NONKEY

BACKGRP FLMGROUP AC=(P),KEY=Y,PROMOTE=RELEASE

RELEASE FLMGROUP AC=(P),KEY=Y,BKGRP=BACKGRP

Figure 22. Sample project definition

Chapter 3. Additional Project Manager Tasks 71

72 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 4. Converting Projects to SCLM

To convert an existing project to an SCLM-controlled project, bring the project

groups under control one at a time beginning with the top layer of the hierarchy,

which is the production (frozen) group, and work downward. Most projects to be

converted already exist in some kind of logical hierarchy. If all production source

code is stored in one logical place and code under development is stored

elsewhere, you have at least a two-layer hierarchy. Before migration can begin, you

must place the source code to be converted into partitioned data sets.

There are many advantages to using the preceding method. First, you can bring a

project under SCLM control in discrete steps, over a period of time. Second, SCLM

can locate integrity problems in the existing hierarchy and fix them systematically

during the conversion process. Third, SCLM performs the conversion using the

same tools that developers use in the normal development process. Thus, you

ensure consistency within the hierarchy, and you become familiar with SCLM.

Finally, from the conversion process, you receive an indication of the performance

that you can expect of SCLM during the development process.

Prerequisites for Existing Hierarchies

The best time to begin the conversion process is when the components to be

controlled are concentrated in a small number of groups—for example,

immediately following a software release. The following actions help you prepare a

hierarchy for the conversion process.

v Create the project definition to be used with the converted hierarchy. See

Chapter 1, “Defining the Project Environment,” for details.

v Verify that all partitioned data sets to be controlled are available online. If the

data is not in partitioned data sets, allocate partitioned data sets by following

“Step 5: Allocate the Project Partitioned Data Sets” on page 13, and copy data

from the existing data sets to the partitioned data sets.

v Delete all unnecessary data from the libraries being converted.

v If you intend to use non-key groups in the converted hierarchy, ensure that they

do not contain any data before conversion.

Create Alternate Project Definitions

You need to create several alternate project definitions to complete the conversion

process. Because the SCLM migration utility can only run against development

libraries, which are in the lowest layer of the hierarchy, you need an alternate

project definition for each layer of the proposed hierarchy. The first alternate

project definition you use defines only the topmost group. That group becomes a

development group. The second project definition defines the topmost group and

those groups that promote into it, and so on. You do not need to define non-key

groups in the alternate project definitions you use for the conversion process

because they should not contain any members.

© Copyright IBM Corp. 1990, 2005 73

Create Architecture Definitions for the Project

Although you can perform the conversion process without architecture definitions,

their creation can greatly simplify the conversion process as well as support future

development needs. Define a set of architecture members first for the code in the

topmost group of the hierarchy. These architecture members must reference only

members that are present in the topmost group because only those members are

visible during the first group conversion.

To determine which architecture members you need, perform the following steps:

1. Determine whether all the build translators can use the default translator

options in the language definitions. If they can, you do not need compilation

control architecture members.

2. Determine the contents of every load module to be controlled. The IEHLIST

utility prints the names of all objects in a load module.

3. Produce a linkage edit control architecture member for every load module, and

reference each object (actually compilable source members) with an INCLD

statement. Use the INCL statement in place of INCLD to reference compilation

control architecture members if they are created above.

4. Produce high-level architecture members as needed to control any

non-translatable data or data that is not included in load modules.

5. Produce a high-level architecture member and reference each linkage edit

control architecture member and high-level architecture member defined above

with an INCL statement.

The high-level architecture member created in Step 5 now defines, through its

dependencies, the entire application architecture.

After you create the architecture members for the topmost group, you might need

to add modifications in the lower groups of the hierarchy. Members that were

added during the development process and were not moved to the topmost group

may require additional architecture members. You must introduce architecture

modifications in the group requiring the change. This action allows the architecture

for the hierarchy to match the members controlled in the hierarchy. See Part 2 of

this document for a description of the process and syntax for defining architecture

members.

Register Existing PDS Members with SCLM

Editable members and noneditable members are processed in separate and unique

ways by SCLM.

Editable members, such as source members, are not created by the SCLM build

function. Editable members must be registered with SCLM through the migration

utility. Both the language associated with the member and a change code (only if

you have a change code verification routine) are required as input to the migration

utility. TEXT can be used as the language of members that do not need to be

compiled, assembled, or processed, such as panels and messages. Call the

migration utility for each library containing editable members.

The SCLM Build function creates noneditable members. Object code, listings, and

load modules are examples of noneditable members. The SCLM build function

must be called to create all of the noneditable members to be tracked within the

hierarchy. If all of the customization related to language translators is complete and

has been tested, run the build processor in the unconditional mode using the

74 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

topmost architecture member for your application. This unconditional build will

identify all build errors that exist. If errors are anticipated and the application is

large, use architecture members with smaller scopes. For example, use an LEC

architecture member rather than an HL. Using the conditional mode of the build

processor causes processing to stop when a member containing an error is

encountered.

The normal process is to migrate source members into SCLM and then generate

the outputs using the SCLM Build function. There may be occasions, however,

where you would like to use SCLM to manage object and load modules for which

the source code no longer exists. There are two ways of doing this.

The first method uses a ’dummy’ language definition with an FLMLANGL macro,

but no FLMTRNSL macros. An example of this is provided as member FLM@OBJ

in the ISP.SISPMACS data set shipped with SCLM. This language definition allows

you to migrate object and load modules into SCLM as editable members in the

same manner that source modules are introduced.

Note: Special care must be taken when using versioning in a project that has

stored object and load modules in this manner. SCLM will consider the

members to be editable and will allow versioning to occur if specified. This

may cause errors in SCLM version processing. The second method is a

better choice when versioning is being used in the project.

The second method involves migrating the object and load modules into a

temporary type and then using the SCLM Build function to copy them to the

target type. The SCLM build process will mark the copied object and load modules

as non-editable. This solution is a better choice for projects with versioning in use.

Member FLM@COPY in the ISP.SISPMACS data set shipped with SCLM can be

used to store object modules into SCLM in this manner. It can be modified for use

with load modules. This language definition will migrate the members into a

temporary type as editable members. SCLM will allow the migrate because, like

the FLM@OBJ language definition, there is no FLMTRNSL macro with

FUNCTN=PARSE and therefore no parser will be invoked. The FLMTRNSL macro

for the Build function calls IEBGENER to copy the modules from one SCLM type

to the other as non-editable outputs.

Introducing Fixes to the Converted Hierarchy

During the conversion process, SCLM might discover integrity errors existing in

the current development hierarchy. If it encounters these errors in the topmost

group of the hierarchy, the errors have an effect on the rest of the conversion

process. You can encounter two kinds of errors:

v Dependency errors for editable members. Errors can be caused when an

included member or macro cannot be found within the hierarchy. If you want

the missing member tracked in the hierarchy, you must copy the correct version

of the included member to the group being converted. If you do not want the

missing member tracked in the hierarchy, define it to SCLM using the

FLMSYSLB macro and the FLMCPYLB macro in the language definition of the

member.

v Compile errors, or any similar translator errors in any group, located during the

build process. The errors must be corrected before proceeding with the

conversion. Use the listings produced by build to locate and correct the errors.

After making the correction rebuild the members that contained the errors.

Chapter 4. Converting Projects to SCLM 75

76 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 5. Language Definition Considerations

SCLM can be tailored to support languages other than those listed in the examples

provided with the product. By creating a language definition as part of the project

definition, you specify to SCLM the languages that will be used for the project.

Language definitions provide SCLM with language-specific control information

such as the language name and the definition of the language translators.

The language definition describes language-specific processing in two ways:

v From a data-flow perspective, the language definition specifies all data sets used

as input to or output from various SCLM processes such as Parse, Build,

Promote, and Delete.

v From a procedural perspective, the language definition specifies the translators

(for example, parsers or compilers) that are invoked to process your

SCLM-controlled data. The order in which those translators are invoked and the

options to be passed to the translators are defined in the language definition.

You must provide SCLM a language definition for each language (PL/I, COBOL,

Link-Edit, and so on) that you want SCLM to support. In most cases, you can

make minor changes to sample SCLM language definitions provided with ISPF.

A language definition consists of a collection of the following definitions:

v System library definitions

v Language identifier definition

v Include set definitions

v Translator definitions

v Allocation definitions

v Copy library definitions

Because a macro exists for each of these definitions and because each macro

accepts a number of different parameters, you can specify a large variety of

language definitions. The language definitions provided with the product are

examples that can serve as a reference in the construction of language definitions

for a specific application and environment.

To determine what modifications you can make to the language definition, become

familiar with the parameters of the language definition macros as documented in

the z/OS ISPF Software Configuration and Library Manager Reference. Typically, if you

want to write a new language definition, you should copy an old language

definition and then modify it to meet your specific needs.

In the remainder of this chapter, several language definitions are examined more

closely in order to describe some of the implementations of language definitions.

Topics discussed in this chapter include:

v Using multiple translators in a language definition

v Invoking user-defined parsers

v Processing conditionally saved components

v Specifying the location of included members

v Tracking dynamic includes

v Using input list translators.

© Copyright IBM Corp. 1990, 2005 77

Using Multiple Translators in a Language Definition

You can use the FLMTRNSL macro to define translators for a language. The

parameters of the FLMTRNSL macro define all the attributes needed to call a given

translator. The FLMTRNSL FUNCTN parameter defines the function or purpose

for which a translator is called. SCLM uses translators for the following functions:

v Parsing source code to determine statistics and dependency information. SCLM

calls these translators when a member is saved in the editor or migrated (dialog

function or MIGRATE service) or saved with the SAVE service.

v Translating one form of code into another, for example:

– Source code to object code and listings

– Script input to a formatted document

– Object code to load modules

SCLM calls these translators during the build process.

v Verifying data. A verify translator performs validation in addition to the default

SCLM validation. The verify translator is invoked before the translation step

(such as compiling and linking) of build, and before the copy phase of promote.

v Copying data. SCLM calls these translators during the promote process. The

data can be either PDS members controlled directly by SCLM or non-PDS data

that includes an intermediate form of compilation units and external data

identified to SCLM via a build translator.

v Purging data. SCLM calls these translators during the promote process. The data

can be either PDS members controlled directly by SCLM or non-PDS data that

includes an intermediate form of compilation units and external data identified

to SCLM via a build translator.

The translators required for a language are language-specific. Some languages

require parse and build translators while others need parse, build, copy, and purge

translators.

Most SCLM-supplied example language definitions have two translators defined.

The first identifies the parser to be invoked, and the second identifies the translator

to be invoked during a build. Language definitions can be created for the

invocation of one or more translators during the parse, build, copy, verify, or purge

functions. For each of these functions, the translators are invoked in the order in

which they appear in the language definition. Within a function in the language

definition, a translator can pass data on to the next translator invoked by that

function within the language definition. This capability allows you to customize

the SCLM product for unique processing requirements in your project.

When connecting SCLM translators in a language definition, make sure they are

ordered so that they will execute in the correct sequence. If used for build, you

should order the preprocessing and compile steps as you would in a CLIST or JCL.

If multiple-step language definitions specify more than one translator to be

invoked during a build, make sure the DDNAMEs for outputs to be copied into

the project hierarchy are unique. If the same DDNAME is used, only the outputs

from the last translator will be copied to the hierarchy. For more information, refer

to “Using DDnames and DDname Substitution Lists” on page 101.

Figure 23 shows a language definition that uses multiple translators. The DB2

preprocessor (DSNHPC) creates a COBOL source data set using the SYSCIN

ddname. The next translator, the COBOL II compiler IGYCRCTL, reads in the

SYSCIN data set.

78 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note that the receiving translator defines SYSCIN as IOTYPE=U, meaning that

SYSCIN has already been allocated in a previous translator step.

* COBOL II WITH DB2 PREPROCESSOR - LANGUAGE DEFINITION FOR SCLM

*

* DB2 OUTPUT IS PASSED VIA THE ’SYSCIN’ DD ALLOCATION TO COBOL II.

* POINT THE FLMSYSLB MACRO(S) AT ALL ’STATIC’ COPY DATASETS.

* CUSTOMIZE THE ’OPTIONS’ AND ’GOODRC’ FIELDS TO YOUR STANDARDS.

* ADD THE ’DSNAME’ FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.

* WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS

* LANGUAGE, THE ’VERSION’ FIELD ON FLMLANGL SHOULD BE CHANGED.

* CHANGE ACTIVITY: *

* *

*

 FLMLANGL LANG=DB2COB2,ALCSYSLB=Y

*

* PARSER TRANSLATOR

*

 FLMTRNSL CALLNAM=’SCLM COBOL PARSE’, C

 FUNCTN=PARSE, C

 COMPILE=FLMLPCBL, C

 PORDER=1, C

 OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

*

* BUILD TRANSLATORS

*

* --DB2 PREPROCESSOR INTERFACE--

 FLMTRNSL CALLNAM=’DB2 PREPROCESS’, C

 FUNCTN=BUILD, C

 COMPILE=DSNHPC, C

 VERSION=1.0, C

 GOODRC=4, C

 PORDER=3, C

 OPTIONS=(HOST(COB2))

* 1 -- N/A --

 FLMALLOC IOTYPE=N

* 2 -- N/A --

 FLMALLOC IOTYPE=N

* 3 -- N/A --

 FLMALLOC IOTYPE=N

* 4 -- SYSLIB --

 FLMALLOC IOTYPE=I,KEYREF=SINC

* 5 -- SYSIN --

 FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

 RECNUM=2000

* 6 -- SYSPRINT --

 FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=121, C

 RECNUM=9000,PRINT=I

* 7 -- N/A --

 FLMALLOC IOTYPE=N

* 8 -- SYSUT1 --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 9 -- SYSUT2 --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 10 -- SYSUT3 --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

Figure 23. COBOL II with DB2 Preprocessor (Part 1 of 2)

Chapter 5. Language Definition Considerations 79

* 11 -- N/A --

 FLMALLOC IOTYPE=N

* 12 -- SYSTERM --

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

* 13 -- N/A --

 FLMALLOC IOTYPE=N

* 14 -- SYSCIN --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C

 RECNUM=9000,DDNAME=SYSCIN

* 15 -- N/A --

 FLMALLOC IOTYPE=N

* 16 -- DBRMLIB--

 FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, C

 DFLTTYP=DBRM,KEYREF=OUT1, C

 RECFM=FB,LRECL=80,RECNUM=5000,DIRBLKS=1

*

* --COBOL II INTERFACE--

*

 FLMTRNSL CALLNAM=’COBOL II COMPILER’, C

 FUNCTN=BUILD, C

 COMPILE=IGYCRCTL, C

 VERSION=2.0, C

 GOODRC=0, C

 PORDER=3, C

 OPTIONS=(XREF,LIB,APOST,NODYNAM,LIST,NONUMBER,NOSEQ)

*

* DDNAME ALLOCATION (USING DDNAMELIST SUBSTITUTION)

*

* 1 (* SYSLIN *)

 FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C

 RECNUM=5000,DFLTTYP=OBJ,DDNAME=SYSLIN

* 2 (* N/A *)

 FLMALLOC IOTYPE=N

* 3 (* N/A *)

 FLMALLOC IOTYPE=N

* 4 (* SYSLIB *)

 FLMALLOC IOTYPE=I,KEYREF=SINC,DDNAME=SYSLIB

* 5 (* SYSIN *)

 FLMALLOC IOTYPE=U,DDNAME=SYSCIN

* 6 (* SYSPRINT *)

 FLMALLOC IOTYPE=O,KEYREF=OUT2,RECFM=FBA,LRECL=133, C

 RECNUM=25000,PRINT=Y,DFLTTYP=LIST,DDNAME=SYSPRINT

* 7 (* SYSPUNCH *)

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

* 8 (* SYSUT1 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 9 (* SYSUT2 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 10 (* SYSUT3 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 11 (* SYSUT4 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 12 (* SYSTERM *)

 FLMALLOC IOTYPE=A,DDNAME=SYSTERM

 FLMCPYLB NULLFILE

* 13 (* SYSUT5 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 14 (* SYSUT6 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* 15 (* SYSUT7 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

Figure 23. COBOL II with DB2 Preprocessor (Part 2 of 2)

80 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Invoking User-Defined Parsers

SCLM allows you to replace an SCLM-supplied source parser with a user-defined

source parser. This option is important when you are defining a new language for

a project because such a language is likely to have a syntax unlike any of the

languages that the SCLM-supplied parsers can recognize.

When you write a new parser for a language, you must:

1. Define the information tracked by SCLM in terms of the syntax of the language

you want to support.

2. Write a program, based on the information you defined, that passes the

statistical and dependency information for a member written in this new

language to SCLM. This program is called a parser.

3. Tell SCLM how to invoke your parser.

Figure 25, Figure 26, and Figure 27 contain a parser, written in PL/I, for the ISPF

skeleton (SKELS) language. This section works through the three preceding steps

using the SKELS parser as an example.

Several user-modifiable parsers, written in REXX, are shipped with SCLM.

FLMLRASM (Assembler), FLMLRCBL (COBOL), FLMRC2 (workstation C/C++

and resource files), FLMLRIPF (workstation help files), FLMLRC37 (C/370) and

FLMLRCIS(C/C++ for MVS with include set support) are described in the z/OS

ISPF Software Configuration and Library Manager Reference. Chapter 7,

“Understanding and Using the Customizable Parsers” contains information on

modifying the REXX parsers.

Defining Information Tracked by SCLM

SCLM tracks four kinds of information for each module:

v Statistical information

Statistical information includes such data as the total lines and the number of

comments in the module. See Part 2 of this document for a description of the 10

statistics kept by SCLM.

v Dependency information

SCLM tracks two types of dependency information. The first is the name of the

members that are included by a member. The second is the include set that is

used to find the include. This information is used when a member is built or

promoted. See “Specifying the Locations of Included Members” on page 94 for

more information on the include information kept by SCLM.

v Change code information

The change code information is a list of change codes associated with members

under SCLM control. These change codes are optional unless the project

manager has defined a change code verification routine requiring them. Includes

and change codes for a member can be viewed with the Library Utility.

v User-defined information

User-defined information is a list of free-form records derived from the member

via the parse translator and stored in the accounting record. When writing a

new parser, define exactly how the parser derives this information from a

module.

Writing the Parser

Consider these things when you write your own parser:

Chapter 5. Language Definition Considerations 81

v If any information is to be passed to the parser from SCLM, it is passed through

a single parameter string as if your program had been invoked from TSO as:

 CALL program ’parameter list’

v You can use the SCLM variables to pass information to the parser about the

module to be parsed.

v You can allocate any files you need (including the module to be parsed) to

ddnames or pass the data set names directly through the parameter list.

v SCLM allocates space for an array and a structure. It is up to the parser to place

statistical and dependency information in the array and the structure as it parses

the module. SCLM can pass the address of the structure and the array to the

parser through the parameter list string. If the parser returns a successful return

code, SCLM moves the parsed information into the accounting record of the

module.

The SKELS parser example consists of four routines. Together, these routines

perform the work needed to parse an ISPF skeleton as we have described.

GETPTRS Takes the addresses from the parameter list and places them in the

appropriate pointer variables.

INITIAL Initializes the counter variables and the parse structure

(STAT_INFO).

PARSE Reads the lines of the skeleton one at a time, and saves any

statistical or dependency information it finds.

WRAPUP Prepares the parse structure and the parse array (LIST_INFO) to be

passed back to SCLM.

Telling SCLM How to Invoke Your Parser

You need to add a few SCLM macros to your project definition for SCLM to

invoke your parser. The macros used to define the SKELS parser are shown in

Figure 24 on page 83 For your parser, you need:

v An FLMLANGL to define your language (if it is not already there)

v An FLMTRNSL to define your parser

v An FLMALLOC for each ddname required by your parser

v An FLMCPYLB for each data set name you want to specify.

In Figure 24, you can examine the keywords on the macros to see how they are

used.

On the FLMLANGL macro, the LANG parameter indicates the string (in this case

it is SKELS) that needs to be given to SCLM when you want SCLM to treat a

module like a skeleton. The BUFSIZE parameter is the number of elements in the

LIST_INFO array that SCLM passes to the parser.

On the FLMTRNSL macro, the COMPILE and DSNAME parameter tell SCLM that

the parser can be found in SCLM.PROJECT.LOAD(FLM@SKLS). The OPTIONS

parameter contains three SCLM variables: @@FLMSTP, @@FLMLIS, and

@@FLMSIZ. When the parser converts the character string values of @@FLMLIS

and @@FLMSTP to fullword binary integers, the result is the addresses of the

LIST_INFO array and the STATS_INFO structure, respectively. The value of

@@FLMSIZ is the number of bytes allocated for the LIST_INFO array.

The first FLMALLOC macro allocates the module to be parsed to ddname

SSOURCE. The SKELS parser looks at this ddname for the skeleton source. The

second FLMALLOC macro allocates an error listings file. If an error occurs during

82 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

the parse, the SKELS parser writes out a message explaining the situation and

providing a recommended solution. If the SKELS parser passes back a return code

greater than that specified on the GOODRC parameter of the FLMTRNSL macro,

the contents of this listings file are written to the edit listings file for the parse.

This is the way you can pass messages and information about the parse to your

users.

/***/

/* ISPF SKELETON LANGUAGE DEFINITION */

/***/

 FLMLANGL LANG=SKEL,VERSION=V2.3,BUFSIZE=50

 PARSER TRANSLATOR

 FLMTRNSL CALLNAM=’SKEL PARSER’, C

 COMPILE=FLM@SKLS, C

 DSNAME=SCLM.PROJECT.LOAD, C

 FUNCTN=PARSE, C

 PORDER=1, C

 GOODRC=0, C

 VERSION=V1R0M0, C

 OPTIONS=’/@@FLMSTP,@@FLMLIS,@@FLMSIZ,’

 (* SOURCE *)

 FLMALLOC IOTYPE=A,DDNAME=SSOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

 (* LISTING *)

 FLMALLOC IOTYPE=W,RECFM=VBA,LRECL=133, C

 RECNUM=6000,DDNAME=ERROR,PRINT=Y

Figure 24. SKELS Parser Definition

Chapter 5. Language Definition Considerations 83

PROCESS;

 /**/

 /*** ***/

 /*** Program: PSKELS ***/

 /*** ***/

 /*** Purpose: Performs an SCLM parse of ISPF skeletons after ***/

 /*** SCLM edit and during migration of source to SCLM.***/

 /*** ***/

 /*** Inputs: A parameter list containing addresses of a ***/

 /*** structure and a variable-length array into which ***/

 /*** parse information is placed. The length of the ***/

 /*** array, in bytes, is also passed. ***/

 /*** ***/

 /*** In addition, source from the member to be parsed ***/

 /*** is read from ddname SSOURCE. ***/

 /*** ***/

 /*** Outputs: The structure and array are filled with parse ***/

 /*** information by this program. Any error messages ***/

 /*** are written to ddname ERROR. ***/

 /*** ***/

 /*** Retcode: A fullword integer value, indicating the overall ***/

 /*** success of the parse, is returned in register 15.***/

 /*** ***/

 /*** 0 = Successful parse; parse information is ***/

 /*** returned in the structure and array. ***/

 /*** ***/

 /*** 4 = Variable-length array was too small to hold ***/

 /*** all of the parsed information. Not all ***/

 /*** information was passed back to SCLM. The ***/

 /*** number of elements needed is shown in the ***/

 /*** listings data set. ***/

 /*** ***/

 /*** To correct this problem, either: ***/

 /*** ***/

 /*** * Increase the value of BUFSIZE in the ***/

 /*** FLMLANGL macro for this parser, or ***/

 /*** ***/

 /*** * Break the skeleton being parsed into ***/

 /*** smaller skeletons and use)IM to join ***/

 /*** them back together. ***/

 /*** ***/

 /*** Logic: 1) Obtain addresses of structure and array from ***/

 /*** parameter list. ***/

 /*** 2) Initialize counters in structure. ***/

 /*** 3) For each line of skeleton source: ***/

 /*** a) Increment appropriate counters. ***/

 /*** b) If record starts with)IM, find and save ***/

 /*** imbedded skeleton name. ***/

 /*** c) Scan the record for variable names and ***/

 /*** save in a program array any new names. ***/

 /*** d) If record starts with)DEFAULT, get new ***/

 /*** ’&’ and ’)’ characters. ***/

 /*** 4) Calculate summary statistics. ***/

 /*** 5) Write an ’END ’ element to end of parse array.***/

 /*** 6) Return. ***/

 /*** ***/

 /**/

Figure 25. Parser for ISPF Skeletons (Part 1 of 8)

84 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

PSKELS: PROC(PARMLIST) OPTIONS(MAIN);

 DCL PARMLIST CHAR(255) VAR; /* Parameter list */

 DCL PARMLISTx CHAR(255) VAR; /* Copy of the parameter list */

 DCL PAREN CHAR(1), /* Contains ’)’ special char */

 NAME CHAR(8), /* Contains a referenced name */

 NAMECHRS CHAR(39), /* Valid name characters */

 RECORD CHAR(80), /* Output buffer for error list */

 STAT_PTR POINTER, /* Points to stats structure */

 LIST_PTR POINTER, /* Points to parse array */

 NON_COM_READ BIT(1), /* Prolog flag */

 EOF BIT(1), /* End-of-file flag */

 (I,J,K) FIXED BIN(31), /* Simple counters */

 USED_ELMTS FIXED BIN(31), /* Number of parse array */

 /* elements used so far */

 LISTLEN FIXED BIN(31), /* Total number of available */

 /* parse array elements */

 RETCODE FIXED BIN(31); /* Return code */

 DCL ADDR BUILTIN,

 INDEX BUILTIN,

 LENGTH BUILTIN,

 MIN BUILTIN,

 REPEAT BUILTIN,

 SUBSTR BUILTIN,

 VERIFY BUILTIN,

 PLIRETC BUILTIN;

 DCL SSOURCE FILE STREAM INPUT;

 DCL ERROR FILE STREAM PRINT;

 DCL FXB_OV FIXED BIN(31), /* Fullword integer */

 PTR_OV POINTER BASED(ADDR(FXB_OV));

 /* Pointer variable overlay on */

 /* top of a fullword integer */

 /* variable */

 %INCLUDE(STATINFO);

 %INCLUDE(LISTINFO);

 RETCODE = 0;

 CALL GETPTRS;

 CALL INITIAL;

 CALL PARSE;

 CALL WRAPUP;

 CALL PLIRETC(RETCODE);

Figure 25. Parser for ISPF Skeletons (Part 2 of 8)

Chapter 5. Language Definition Considerations 85

GETPTRS: PROC;

 /**/

 /*** ***/

 /*** Routine: GETPTRS ***/

 /*** ***/

 /*** Purpose: Converts the information passed to this program ***/

 /*** into addresses and array length information. ***/

 /*** ***/

 /*** Inputs: A varying length string containing parameters in ***/

 /*** the following format: ***/

 /*** ***/

 /*** ’<stat_ptr>,<list_ptr>,<length>,’ ***/

 /*** ***/

 /*** where stat_ptr is the EBCDIC representation ***/

 /*** of the address of the static ***/

 /*** portion of the account ***/

 /*** record for this member, ***/

 /*** list_ptr is the EBCDIC representation ***/

 /*** of the address of the ***/

 /*** dynamic portion of the ***/

 /*** account record, and ***/

 /*** length is the number of bytes ***/

 /*** allocated to the dynamic ***/

 /*** portion of the account ***/

 /*** record. This value is equal ***/

 /*** to 228 times the number of ***/

 /*** elements in that array. ***/

 /*** ***/

 /*** Note that this format is consistent with the ***/

 /*** OPTIONS keyword on the FLMTRNSL macro that ***/

 /*** specifies how to invoke this parser. ***/

 /*** ***/

 /*** Outputs: The three variables, STAT_PTR, LIST_PTR and ***/

 /*** LISTLEN are set from the values in the ***/

 /*** parameter list. ***/

 /*** ***/

 /*** Logic: 1) Find the first comma. ***/

 /*** 2) Convert the contents of the character string ***/

 /*** before that comma into integer format. For ***/

 /*** example, the string ’19,’ would be converted ***/

 /*** into an integer (X’00000013’) ***/

 /*** 3) Find the next comma. ***/

 /*** 4) Convert the contents of the character string ***/

 /*** before that comma into integer format. ***/

 /*** 5) Find the last comma. ***/

 /*** 6) Convert the contents of the character string ***/

 /*** before that comma into integer format. ***/

 /*** ***/

 /*** Note: We take advantage of PL/I’s ability to convert ***/

 /*** a number in character string format into a ***/

 /*** fullword binary value. ***/

 /*** ***/

 /**/

 PARMLISTX = PARMLIST;

 I = INDEX(PARMLIST,’,’);

 FXB_OV = SUBSTR(PARMLIST,1,I-1);

 STAT_PTR = PTR_OV;

 PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

Figure 25. Parser for ISPF Skeletons (Part 3 of 8)

86 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

I = INDEX(PARMLIST,’,’);

 FXB_OV = SUBSTR(PARMLIST,1,I-1);

 LIST_PTR = PTR_OV;

 PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

 I = INDEX(PARMLIST,’,’);

 LISTLEN = SUBSTR(PARMLIST,1,I-1);

 LISTLEN = LISTLEN / 228;

 END GETPTRS;

 INITIAL: PROC;

 /**/

 /*** ***/

 /*** Routine: INITIAL ***/

 /*** ***/

 /*** Purpose: Initializes the counters and variables to be ***/

 /*** used during the parse. ***/

 /*** ***/

 /*** Inputs: None. ***/

 /*** ***/

 /*** Outputs: Initialized variables. ***/

 /*** ***/

 /**/

 STATINFO.LINES.TOTAL = 0; /* # of lines in the skeleton */

 STATINFO.LINES.COMMENT = 0; /* # of lines starting with)CM */

 STATINFO.LINES.NON_COMMENT= 0; /* # lines not starting w/)CM */

 STATINFO.LINES.BLANK = 0; /* # lines starting with)BLANK */

 STATINFO.LINES.PROLOG = 0; /* # lines before 1st noncomment */

 /**/

 STATINFO.STMTS.TOTAL = 0; /* = LINES.TOTAL */

 STATINFO.STMTS.COMMENT = 0; /* = LINES.COMMENT */

 STATINFO.STMTS.CONTROL = 0; /* # of lines starting with) */

 STATINFO.STMTS.ASSIGNMENT = 0; /* = 0 */

 STATINFO.STMTS.NON_COMMENT= 0; /* = LINES.NON_COMMENT */

 /**/

 USED_ELMTS = 0;

 /**/

 NAMECHRS = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789@#$’;

 PAREN = ’)’;

 END INITIAL;

 PARSE: PROC;

 /**/

 /*** ***/

 /*** Routine: PARSE ***/

 /*** ***/

 /*** Purpose: Parses the skeleton and places the result in the ***/

 /*** account record structures whose addresses were ***/

 /*** passed to the program. ***/

 /*** ***/

 /*** Inputs: Skeleton source from ddname SSOURCE. ***/

 /*** ***/

 /*** Outputs: Parse results in structure STAT_INFO and array ***/

 /*** LIST_INFO. ***/

 /*** ***/

 /*** Logic: 1) Read each record of the skeleton. For each ***/

 /*** line read, increment the appropriate ***/

 /*** counters. ***/

 /*** ***/

 /**/

Figure 25. Parser for ISPF Skeletons (Part 4 of 8)

Chapter 5. Language Definition Considerations 87

OPEN FILE(SSOURCE);

 EOF = ’0’B;

 NON_COM_READ = ’0’B;

 ON ENDFILE(SSOURCE) EOF = ’1’B;

 GET FILE(SSOURCE) EDIT(RECORD) (A(80));

 DO WHILE (¬EOF);

 /**/

 /*** Perform this loop for each record in the skeleton. ***/

 /**/

 /*** Increment total line counter. ***/

 /**/

 STATINFO.LINES.TOTAL = STATINFO.LINES.TOTAL + 1;

 /**/

 /*** If the line starts with)IM, save the name of the ***/

 /*** imbedded member in LIST_INFO in an ’INCL’ array element. ***/

 /**/

 IF SUBSTR(RECORD,1,3) = PAREN ││ ’IM’ THEN

 DO;

 CALL GETNAME;

 USED_ELMTS = USED_ELMTS + 1;

 IF USED_ELMTS < LISTLEN THEN

 DO;

 LISTINFO(USED_ELMTS).TYPE = ’INCL’;

 LISTINFO(USED_ELMTS).DATA = NAME;

 END;

 ELSE;

 END;

 ELSE;

 /**/

 /*** If the line starts with)DOT, save the name of the ***/

 /*** referenced table in LIST_INFO in a ’USER’ array element. ***/

 /**/

 IF SUBSTR(RECORD,1,4) = PAREN ││ ’DOT’ THEN

 DO;

 CALL GETNAME;

 USED_ELMTS = USED_ELMTS + 1;

 IF USED_ELMTS < LISTLEN THEN

 DO;

 LISTINFO(USED_ELMTS).TYPE = ’USER’;

 LISTINFO(USED_ELMTS).DATA = ’TABLE: ’ ││ NAME;

 END;

 ELSE;

 END;

 ELSE;

 /**/

 /*** If the line starts with)CM, increment the comment ***/

 /*** counter. Otherwise, increment the non-comment counter. ***/

 /**/

 IF SUBSTR(RECORD,1,3) = PAREN ││ ’CM’ THEN

 STATINFO.LINES.COMMENT = STATINFO.LINES.COMMENT + 1;

 ELSE

 STATINFO.LINES.NON_COMMENT = STATINFO.LINES.NON_COMMENT + 1;

Figure 25. Parser for ISPF Skeletons (Part 5 of 8)

88 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

/**/

 /*** If the line starts with)BLANK, increment the blank line ***/

 /*** counter. ***/

 /**/

 IF SUBSTR(RECORD,1,6) = PAREN ││ ’BLANK’ THEN

 STATINFO.LINES.BLANK = STATINFO.LINES.BLANK + 1;

 ELSE;

 /**/

 /*** If the line starts with), increment the control ***/

 /*** statement counter. ***/

 /*** ***/

 /*** If the line does not start with), increment the data ***/

 /*** line counter. ***/

 /*** ***/

 /*** If this is the first data line, then we have reached the end***/

 /*** of the prolog (defined here as the comment lines before the ***/

 /*** first data line). Set the prolog count to the number of ***/

 /*** comments read so far. ***/

 /**/

 IF SUBSTR(RECORD,1,1) = PAREN THEN

 STATINFO.STMTS.CONTROL = STATINFO.STMTS.CONTROL + 1;

 ELSE

 DO;

 IF ¬NON_COM_READ THEN

 DO;

 STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;

 NON_COM_READ = ’1’B;

 END;

 ELSE;

 END;

 /**/

 /*** If this line starts with)DEFAULT, then the special ***/

 /*** character (the left parenthesis) for control cards might ***/

 /*** have changed. Get the new character. ***/

 /**/

 IF SUBSTR(RECORD,1,8) = PAREN ││ ’DEFAULT’ THEN

 DO;

 I = VERIFY(SUBSTR(RECORD,9,72),’ ’) + 8;

 PAREN = SUBSTR(RECORD,I,1);

 END;

 ELSE;

 /**/

 /*** End of parse-a-line loop. If there’s another line, read it ***/

 /*** and go back through the loop. ***/

 /**/

 GET FILE(SSOURCE) EDIT(RECORD) (A(80));

 END;

 CLOSE FILE(SSOURCE);

 /**/

 /*** If there were no non-comment lines, then set the number of ***/

 /*** prolog lines to the number of comment lines. ***/

 /**/

 IF ¬NON_COM_READ THEN

 STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;

 ELSE;

 END PARSE;

Figure 25. Parser for ISPF Skeletons (Part 6 of 8)

Chapter 5. Language Definition Considerations 89

GETNAME: PROC;

 /**/

 /*** ***/

 /*** Routine: GETNAME ***/

 /*** ***/

 /*** Purpose: Returns the name specified on an)IM or)DOT ***/

 /*** statement. ***/

 /*** ***/

 /*** Inputs: An 80-byte record in variable RECORD. ***/

 /*** ***/

 /*** Outputs: The 8-byte name in variable NAME. ***/

 /*** ***/

 /*** Logic: 1) Find the first blank after the)IM or)DOT. ***/

 /*** 2) Find the next nonblank after that blank. ***/

 /*** 3) Move that nonblank and the next 7 bytes into ***/

 /*** variable NAME. ***/

 /*** ***/

 /**/

 I = INDEX(RECORD,’ ’);

 I = VERIFY(SUBSTR(RECORD,I,81-I),’ ’) + I - 1;

 NAME = SUBSTR(RECORD,I,8);

 END GETNAME;

 WRAPUP: PROC;

 /**/

 /*** ***/

 /*** Routine: WRAPUP ***/

 /*** ***/

 /*** Purpose: Saves the last of the parse information in the ***/

 /*** SCLM structures and outputs error messages to ***/

 /*** the listing file if the LIST_INFO array was not ***/

 /*** large enough to hold all of the information. ***/

 /*** ***/

 /*** Inputs: None. ***/

 /*** ***/

 /*** Outputs: More data in LIST_INFO and STAT_INFO. ***/

 /*** ***/

 /*** Logic: 1) Calculate summary information. ***/

 /*** 2) Write an ’END ’ element to LIST_INFO. ***/

 /*** 3) If there was not enough room in LIST_INFO, ***/

 /*** write out messages that describe the error ***/

 /*** and that indicate how to solve the problem. ***/

 /*** ***/

 /**/

 STATINFO.STMTS.TOTAL = STATINFO.LINES.TOTAL;

 STATINFO.STMTS.COMMENT = STATINFO.LINES.COMMENT;

 STATINFO.STMTS.NON_COMMENT = STATINFO.LINES.NON_COMMENT;

Figure 25. Parser for ISPF Skeletons (Part 7 of 8)

90 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

/**/

 /* WRITE AN END ELEMENT TO LIST ARRAY */

 /**/

 USED_ELMTS = USED_ELMTS + 1;

 IF USED_ELMTS < LISTLEN THEN

 DO;

 LISTINFO(USED_ELMTS).TYPE = ’END ’;

 LISTINFO(USED_ELMTS).DATA = ’ ’;

 END;

 ELSE

 DO;

 OPEN FILE(ERROR);

 /**/

 PUT FILE(ERROR) SKIP LIST(

 ’ERROR: INFORMATION RESULTING FROM PARSE DOES NOT ’ ││

 ’FIT IN PARSE ARRAYS.’);

 /**/

 PUT FILE(ERROR) SKIP LIST(

 ’ PARSE ARRAY ELEMENTS:’, LISTLEN);

 /**/

 PUT FILE(ERROR) SKIP LIST(

 ’ ELEMENTS NEEDED: ’, USED_ELMTS);

 /**/

 PUT FILE(ERROR) SKIP(2) LIST(

 ’FIX: 1) INCREASE BUFSIZE VALUE IN FLMLANGL MACRO,’);

 /**/

 PUT FILE(ERROR) SKIP LIST(

 ’ - OR - ’);

 /**/

 PUT FILE(ERROR) SKIP LIST(

 ’ 2) BREAK THIS SKELETON UP INTO SMALLER ’ ││

 ’SKELETONS AND IMBED THEM ’);

 /**/

 PUT FILE(ERROR) SKIP LIST(

 ’ IN A NEW "TOP LEVEL" SKELETON ’);

 /**/

 PUT FILE(ERROR) SKIP(2) LIST(

 ’PARAMETER LIST: ’ ││ PARMLISTX);

 /**/

 LISTINFO(LISTLEN).TYPE = ’END ’;

 LISTINFO(LISTLEN).DATA = ’ ’;

 /**/

 CLOSE FILE(ERROR);

 /**/

 RETCODE = 4;

 END;

 END WRAPUP;

 END PSKELS;

Figure 25. Parser for ISPF Skeletons (Part 8 of 8)

Chapter 5. Language Definition Considerations 91

Processing Conditionally Saved Components

SCLM provides a feature to handle translators that, by design, have missing or

static outputs. Static outputs help SCLM in its work-avoidance algorithms. Note,

however, that SCLM relies on translator return codes to determine which outputs

are static.

Example of Processing Conditionally Saved Components

Suppose a translator can determine if a developer changed only comments in the

source code, and signals that by a return code of 2. The translator creates a listing

output to match the current source. However, creating object code for the source is

unnecessary because comment changes to source do not alter object code. In this

case, the object code is a static output because it did not change. Specifying a

NOSAVRC=2 on the FLMALLOC macro corresponding to the object output

instructs SCLM not to copy object modules back to the hierarchy when the

translator returns a 2. SCLM copies the generated listing back to the hierarchy

when the translator returns a 2, if the object modules already exist in the hierarchy.

 /***/

 /*** ***/

 /*** LISTINFO Structure ***/

 /*** ***/

 /*** Maps the static portion of the account record. ***/

 /*** ***/

 /*** The number of elements declared for this array should not ***/

 /*** be greater than the value specified on the BUFSIZE keyword ***/

 /*** on the FLMLANGL macro. ***/

 /*** ***/

 /***/

 DCL 1 LISTINFO(50) BASED(LIST_PTR),

 2 TYPE CHAR(4),

 2 DATA CHAR(224);

Figure 26. LISTINFO Module

 /***/

 /*** ***/

 /*** STATINFO Structure ***/

 /*** ***/

 /*** Maps the static portion of the account record. ***/

 /*** ***/

 /***/

 DCL 1 STATINFO BASED(STAT_PTR),

 2 LINES,

 3 TOTAL FIXED BIN(31),

 3 COMMENT FIXED BIN(31),

 3 NON_COMMENT FIXED BIN(31),

 3 BLANK FIXED BIN(31),

 3 PROLOG FIXED BIN(31),

 2 STMTS,

 3 TOTAL FIXED BIN(31),

 3 COMMENT FIXED BIN(31),

 3 CONTROL FIXED BIN(31),

 3 ASSIGNMENT FIXED BIN(31),

 3 NON_COMMENT FIXED BIN(31);

Figure 27. STATINFO Module

92 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Components that depend on the object do not need to be rebuilt when only the

listing is regenerated. If you specify DEPPRCS=N on the FLMLANGL macro,

SCLM rebuilds components dependent on a member only if all its outputs were

saved.

Setting Up the Project Definition

To access this feature, use the FLMALLOC, FLMLANGL, and FLMTRNSL macros:

1. Identify the static outputs and their corresponding FLMALLOCs in the

language definition.

2. For each static output:

v List the translator return code that indicates that the output is not to be

saved

v Specify that return code as the NOSAVRC parameter of the FLMALLOC

macro for that output.

The NOSAVRC must have a nonzero positive value. It is only valid for

IOTYPEs O and P.

3. Make sure that the GOODRC on the FLMTRNSL macro corresponding to that

translator is greater than or equal to the highest NOSAVRC parameter you

specified.

4. Determine whether you want SCLM to rebuild components that depend on a

given member only if all its outputs (including the static outputs) were saved.

If that is the case, specify DEPPRCS=N on the FLMLANGL macro. If you

specify DEPPRCS=Y (or let it default to Y), SCLM rebuilds components that

depend on that member whenever the build translator returns a good return

code. In the preceding example, DEPPRCS=Y causes SCLM to rebuild

components that depend on the given member even when only the listing has

changed.

Likewise, the translator can directly store output in an external data set not under

SCLM control. For example, the Ada translator controls output stored in Ada

sublibraries. Under such circumstances, the build function requires a signal from

the translator to detect whether some of the external outputs were saved to

external data sets. SCLM uses NOSVEXT on the FLMTRNSL macro in the same

fashion as the parameter NOSAVRC on the FLMALLOC macro to detect whether

external outputs were saved.

 FLMLANGL LANG=XYZ,VERSION=V1,DEPPRCS=N

* BUILD TRANSLATOR(S)

*

 FLMTRNSL CALLNAM=’TRANSLATOR XYZ’, C

 FUNCTN=BUILD, C

 COMPILE=XYZ, C

 GOODRC=4

*

* (* SYSIN *)

 FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

 RECNUM=1000,DDNAME=SYSIN

* (* SYSPRINT *)

 FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=133, C

 RECNUM=30000,PRINT=Y,DDNAME=SYSPRINT,DFLTTYP=LISTING

* (* SYSLIN *)

 FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C

 RECNUM=5000,DDNAME=SYSLIN,DFLTTYP=OBJ,NOSAVRC=2

Figure 28. Sample Language Definition for Conditionally Saved Components

Chapter 5. Language Definition Considerations 93

Specifying the Locations of Included Members

SCLM tracks two pieces of information for each include member that is found by a

parser. The first piece of information is the member name of the include; the

second is the include set that contains the included member. If no include set is

returned by the parser for a member, SCLM assigns that member to the default

include set. The name of the default include set is all blanks.

SCLM does not track an include member if it meets all of the following conditions:

v The language definition for the member specifies CHKSYSLB=PARSE. This is the

default.

v An accounting record for the include is not found by searching the hierarchy for

each type specified on the FLMINCLS for the include set.

v The include is found in one of the data sets specified on an FLMSYSLB macro

for the include set.

Includes that meet these conditions are removed from the list of includes stored in

the accounting record of the member. Because the include is not being tracked,

build and promote do not detect if the include is removed from the FLMSYSLB

data sets or added to the project database.

Build ignores an include if it meets all of the following conditions:

v The language definition for the member specifies CHKSYSLB=BUILD.

v An accounting record for the include is not found by searching the hierarchy for

each type specified on the FLMINCLS for the include set.

v The include is found in one of the data sets specified on an FLMSYSLB macro

for the include set.

Includes that meet these conditions are removed from the list of includes stored in

the build map record of the member. Because the include is not being tracked,

build and promote will not detect if the include has changed since the last build.

The include information is used by build and promote to determine whether the

member is up-to-date. When you build, the includes for an up-to-date member

have the same type, date, time, and version as the last time that member was built.

When you promote, the includes for an up-to-date member have the same date,

time, and version as the last time that member was built. Promote does not search

the types listed on FLMINCLS macros for includes. It relies instead on the

information in the build map to determine the type name of the included member.

If a member is not up-to-date, build attempts to rebuild the member and promote

does not allow the member to be promoted to the next group in the hierarchy.

An include set is used to associate an included member name with the type or

types in the project that are searched to find a member with that name. The

FLMINCLS macro is used to associate an include set with one or more types in the

project definition. Types are searched in the order listed on the FLMINCLS macro.

Each type is searched from the current group to the top of the hierarchy before the

next type in the list is searched.

The number of include sets used by a language is usually related to the number of

include ddnames supported by the build translators for that language, where the

includes are located in project data sets. If the build translator only supports one

include ddname, a single include set is sufficient for that language. On the other

94 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

hand, if there are multiple build translators, each supporting an include ddname

and the includes are separated into different types for each build translator,

multiple include sets would be needed.

If multiple include sets are needed, parsers must return the appropriate include set

for each include.

Example

This example shows how pieces of a project might look if it were set up to use

multiple include sets.

The following list shows the different types of includes in the project and the

location of each include type in the project data sets.

Include Type Project Types and SYSLIB Data sets to Search

Constants CONSTANT

Messages INCLENGL, INCLUDE, PRODX.MSGLIB (syslib

data set)

SQL Declarations DCLGEN, source member’s type, source member’s

extended type

All other includes INCLUDE, source member’s type, source member’s

extended type, SYS1.SEDCHDRS (syslib data set)

 Figure 29 shows how the include section of a source member might be coded:

 The parser must return the following:

Member include set

STDIO

SQLDEF1 SQL

PROG1 MESSAGE

COMMON CONSTANT

PROG1 CONSTANT

 You could then use the language definition in Figure 30 on page 96 for this

member.

#include <stdio> /* C standard i/o */

EXEC SQL INCLUDE SQLDEF1; /* SQL definitions */

#include "DD:MESSAGE(prog1)" /* prog1 specific messages */

#include "DD:CONSTANT(common)" /* common constants */

#include "DD:CONSTANT(prog1)" /* prog1 specific constants */

Figure 29. Source member with includes in different include sets

Chapter 5. Language Definition Considerations 95

* C370 W/DB2 LANGUAGE DEFINITION FOR PROJECT X *

* *

*

CDB2 FLMSYSLB SYS1.SEDCHDRS

*

 FLMLANGL LANG=CDB2,VERSION=V1,ALCSYSLB=Y

*

* CONSTANT INCLUDES

*

CONSTANT FLMINCLS TYPES=(CONSTANT)

*

* MESSAGE INCLUDES

*

MESSAGE FLMINCLS TYPES=(INCLENGL,INCLUDE)

*

* SQL INCLUDES

*

SQL FLMINCLS TYPES=(DCLGEN,@@FLMTYP,@@FLMETP)

*

* ALL OTHER INCLUDES - DEFAULT INCLUDE SET

*

 FLMINCLS TYPES=(INCLUDE,@@FLMTYP,@@FLMETP)

*

* PARSER TRANSLATOR

*

 FLMTRNSL CALLNAM=’C370 REXX PARSER’, C

 FUNCTN=PARSE, C

 COMPILE=MYCPARSE, C

 DSNAME=SOMEUSR.PARSER.LOAD, C

 CALLMETH=TSOLNK, C

 PORDER=1, C

 OPTIONS=(LISTSIZE=@@FLMSIZ, C

 LISTINFO=@@FLMLIS, C

 STATINFO=@@FLMSTP)

* (* SOURCE *)

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

*

* BUILD DB2 PREPROCESSOR TRANSLATOR

*

* --DB2 PREPROCESSOR INTERFACE--

 FLMTRNSL CALLNAM=’DB2 C PREP’, C

 FUNCTN=BUILD, C

 COMPILE=DSNHPC, C

 VERSION=D220, C

 GOODRC=4, C

 PORDER=3, C

 OPTIONS=(HOST(C),APOST)

Figure 30. Language definition to support multiple include sets (Part 1 of 3)

96 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

* 1 -- N/A --

 FLMALLOC IOTYPE=N

* 2 -- N/A --

 FLMALLOC IOTYPE=N

* 3 -- N/A --

 FLMALLOC IOTYPE=N

* 4 -- SYSLIB --

 FLMALLOC IOTYPE=I,INCLS=SQL

* 5 -- SYSIN --

 FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

 RECNUM=5000

* 6 -- SYSPRINT --

 FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=133, C

 RECNUM=35000,PRINT=Y

* 7 -- N/A --

 FLMALLOC IOTYPE=N

* 8 -- SYSUT1 --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 9 -- SYSUT2 --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 10 -- SYSUT3 --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

* 11 -- N/A --

 FLMALLOC IOTYPE=N

* 12 -- SYSTERM --

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

* 13 -- N/A --

 FLMALLOC IOTYPE=N

* 14 -- SYSCIN --

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C

 RECNUM=9000,DDNAME=DB2TRANS

* 15 -- N/A --

 FLMALLOC IOTYPE=N

* 16 -- DBRMLIB--

 FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, C

 DFLTTYP=DBRM,KEYREF=OUT1, C

 RECFM=FB,LRECL=80,RECNUM=5000,DIRBLKS=1

*

* BUILD C370 TRANSLATOR

*

 FLMTRNSL CALLNAM=’C 370’, C

 FUNCTN=BUILD, C

 COMPILE=EDCCOMP, C

 DSNAME=SYS1.SEDCCOMP, C

 VERSION=C210, C

 GOODRC=0, C

 PORDER=3, C

 OPTIONS=(XREF,LANGLVL(SAAL2),SOURCE,OPT,TEST(ALL), C

 MARGINS(1,72),NOGONUM,NOTERMINAL,FLAG(I),SHOWINC)

Figure 30. Language definition to support multiple include sets (Part 2 of 3)

Chapter 5. Language Definition Considerations 97

*

* 1 (* SYSIN *)

 FLMALLOC IOTYPE=U,DDNAME=DB2TRANS

*

* 2 (* SYSLIN *)

 FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C

 RECNUM=5000,DFLTTYP=OBJ

*

* 3 (* SYSMSGS *)

 FLMALLOC IOTYPE=A

 FLMCPYLB SYS1.SEDCMSGS(EDCMSGE)

*

* 4 (* SYSLIB *)

 FLMALLOC IOTYPE=A

 FLMCPYLB SYS1.SEDCHDRS

*

* 5 (* USERLIB *)

 FLMALLOC IOTYPE=I

*

* 6 (* SYSPRINT *)

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

*

* 7 (* SYSCPRT *)

 FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=137, C

 RECNUM=20000,PRINT=Y,DFLTTYP=LIST

*

* 8 (* SYSPUNCH *)

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

*

* 9 (* SYSUT1 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

*

* 10 (* SYSUT4 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

*

* 11 (* SYSUT5 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000*

* 12 (* SYSUT6 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

*

* 13 (* SYSUT7 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

*

* 14 (* SYSUT8 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

*

* 15 (* SYSUT9 *)

 FLMALLOC IOTYPE=W,RECFM=VB,LRECL=137,RECNUM=2000

*

* 16 (* SYSUT10 *)

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

*

* (* CONSTANT *)

 FLMALLOC IOTYPE=I,DDNAME=CONSTANT,INCLS=CONSTANT

*

* (* MESSAGE *)

 FLMALLOC IOTYPE=I,DDNAME=MESSAGE,INCLS=MESSAGE

Figure 30. Language definition to support multiple include sets (Part 3 of 3)

98 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Dynamic Include Tracking

The SCLM build processor attempts to resolve all include references to source

members before it invokes any translator. However, for some translators, the

include for a source member cannot be resolved until after the translator

invocation. Such includes are referred to as dynamic includes. SCLM can track

dynamic includes if the dynamic includes for a member can be altered only by

modification of the member or one of the included members.

To support dynamic includes, SCLM invokes an additional build translator step

(FLMTRNSL macro) following the translator that produces the output data set

containing a list of dynamic includes. This additional translator should parse the

output data set for dynamic includes and store them in memory supplied by the

build processor. You pass the address of this memory to the translator by

specifying the SCLM variable @@FLMINC in the translator options (OPTION

parameter on FLMTRNSL macro). @@FLMINC is a pointer to a set of includes relating

to a specified member. The value of @@FLMINC is a string of decimal characters that

you must convert to a fullword binary value before using it as an address. The

following record layout is used to store the dynamic includes:

 You must specify the number of dynamic includes in the first 4 bytes as a fullword

binary integer, followed by the list of dynamic include member and type names.

The amount of memory that the SCLM build processor supplies limits the number

of dynamic includes to 1000.

When using dynamic includes, consider the following:

v Be sure to remove any duplicate include references before placing them in the

structure pointed to by @@FLMINC.

v Processors need the ability to handle 31-bit addresses as specified by the

@@FLMINC parameter.

v Do not return any include references that are actually to external (non-SCLM)

libraries. The build step will receive an error (FLM01001) for any members not

in the specified SCLM library.

v Deletion of members referenced through a dynamic include causes a build

verification error (FLM43001). The build process does not proceed, even when

using unconditional mode. If a referenced member is to be deleted, a build using

the updated source should be performed before the deletion so that the build

map can be updated to remove the reference.

v Dynamic include references to members that are outputs of other members do

not cause a relationship to the member that created it, even when using

extended mode. Builds and promotes for these must use a high-level architecture

definition whose scope includes both source members.

 COUNT : 4 bytes

 TYPE1 : 8 bytes

 MEMBER1 : 8 bytes

 TYPE2 : 8 bytes

 MEMBER2 : 8 bytes

 .

 .

 .

 TYPE# : 8 bytes

 MEMBER# : 8 bytes

Figure 31. Record Layout Used to Store Dynamic Includes

Chapter 5. Language Definition Considerations 99

Input List Translators

SCLM provides support for Build translators that operate on more than one source

member in a single invocation. This type of translator is known as an input list

translator. SCLM users can use existing translators that support this feature or

write new user-defined translators to take advantage of the feature. The IBM

Ada/370 Compiler is the only SCLM-supported translator that can use input lists.

The SCLM Input List feature can increase the performance of an SCLM Build.

Instead of SCLM calling a translator once for each member to be built, SCLM calls

the translator passing a list of members to be built. SCLM attempts to place as

many members as possible on each input list, thereby limiting the number of

translator invocations. The project manager specifies the maximum number of

members passed to a translator on an invocation in the language definition that

includes the translator. This feature is most useful when using translators that have

a high startup overhead to run. Fewer invocations mean increased speed for the

SCLM Build process.

An input list translator receives a file that contains a list of data sets that a Build

action is performed against. It returns a file that contains a return code for each

data set in the input list and, optionally, a set of unique outputs for each data set

in the input list.

Two translators, FLMTPRE and FLMTPST, serve as the interfaces between SCLM

and the input list translator.

v The FLMTPRE translator generates a list of data sets that an input list translator

can use as input.

v The FLMTPST translator passes the return code information that an input list

translator provides for every data set on the input list back to SCLM.

Refer to the z/OS ISPF Software Configuration and Library Manager Reference for more

information about FLMTPRE and FLMTPST.

Note: The input list feature of the Build function is designed to work with direct

translations of source members only (source members referenced with an

INCLD statement). Using the input list feature with source members

controlled by CC or Generic architecture definitions will produce undefined

results (source members referenced with a SINC statement).

Configuring the Input List Translators

Use the following macros to configure the input list translators to fit your needs:

v FLMLANGL

Set the following parameters:

– INPLIST=Y

– MBRLMT to the maximum number of members that can be included in the

same invocation of the translator.

– SLOCLMT to the maximum number of source lines to be processed on a

single invocation of the translator.
v FLMTRNSL

Set the following parameters:

– INPLIST=Y

– MBRRC to the maximum good return code for each member in the input list.

MBRRC defaults to 0 and is optional.

100 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

v FLMALLOC

Set the following parameters:

– MALLOC to designate which outputs of a translator have multiple unique

instances.

– IOTYPE to O or P.

SCLM only saves outputs with IOTYPE=O in the hierarchy. For IOTYPE=O,

you must also specify the FLMCPYLB macro and the data set name on

FLMCPYLB must contain the @@FLMMBR variable somewhere in the

variable string to enable SCLM to find the member-specific outputs. When

IOTYPE=O is specified, the input list translator is expected to allocate the

output data sets necessary for each member.

Temporary data sets allocated with IOTYPE=P can be used as work data sets

for the translators, but they cannot be stored in the hierarchy.

– ALLCDEL to designate which output data sets were defined by the translator

and should be deleted by SCLM.

Defining a New Language to SCLM

This section describes the control structures used to manage SCLM processes and

illustrates how to define a new language to SCLM. An example is included to

show the statements needed to define the control structures and SCLM macros.

The example refers to a fictitious compiler, the Finnoga 4, to show how to gather

the information you need and how to specify that information to SCLM in the

form of language definition macros.

Using DDnames and DDname Substitution Lists

Many translators support a ddname substitution list; this contains ddnames, which

are passed as a parameter to the translator. In Figure 34 on page 116, the ddname

in position 5 is the ddname from which the compiler reads the source to be

compiled. The ddname occupying that position in the ddname substitution list is

usually called SYSIN. You can override the default ddname by placing another

ddname in position 5 of the ddname substitution list. The compiler then reads

from the other ddname. Table 13 on page 102 lists the various ddnames used by

the Finnoga 4 compiler described in this example. The position number indicates

the position of the ddname in a ddname substitution list. In addition, Table 13 on

page 102 gives a brief description of the data sets allocated to the ddnames.

Note that some position numbers do not have a ddname associated with them.

SCLM allows a maximum of 512 characters for the ddname substitution list.

Because every FLMALLOC for a given translator causes an 8-character ddname to

be put into the ddname substitution list, when the PORDER > 1, a given translator

may have a maximum of 64 FLMALLOCs.

Ddname substitution lists are usually documented in the programming guide for

specific compilers and linkage editors. Note that it is rare for two different

compilers to have the same ddname substitution list mappings.

Compilers are not required to support a ddname substitution list in order to be

defined to SCLM. However, ddname substitution list support makes it easy to link

or string two different compilers or preprocessors together. In “Defining a

Preprocessor to SCLM” on page 113, you will see how a ddname substitution list is

used to pass the outputs of a preprocessor to a compiler.

Chapter 5. Language Definition Considerations 101

Compiler Options

Assume that there are four Finnoga 4 compiler options that you can use:

v SOURCE or NOSOURCE

v MACRO or NOMACRO

v OPTIMIZE or NOOPTIMIZE

v OBJ().

It is not critical at this point to understand what these options mean to the

compiler, just which options are to be used for each compile. You should always

specify SOURCE, NOMACRO, and OBJ(), but you must specify the OPTIMIZE

parameter on a module-by-module basis.

 Table 13. DDname Substitution List Example

Position

Number DDname Description of data set(s) allocated

1 SYSLIN A partitioned data set into which the Finnoga 4 compiler writes

the object module. The OBJ keyword in the compiler’s option

string specifies the member name to use.

2 <none> <none>

3 <none> <none>

4 SYSLIB One or more partitioned data sets through which the Finnoga 4

compiler searches for INCLUDE members.

5 SYSIN A sequential data set that contains Finnoga 4 source to be

compiled.

6 SYSPRINT A sequential listings data set. The Finnoga 4 compiler writes

out a copy of the source that was compiled along with any

error, warning, and informational messages.

7 <none> <none>

8 FINLIB A data set that contains information needed by the Finnoga 4

compiler. This data set comes with the compiler.

9 <none> <none>

10 SYSUT1 A sequential work data set.

11 SYSUT2 A sequential work data set.

Defining a New Language: Step-by-Step

The following list briefly describes the process required to write a new SCLM

language definition:

1. Define the language name to SCLM.

2. Define include-sets for the language to identify the locations of included

members.

3. List the various programs (parsers, compilers, and so on) used to parse and

build your source.

4. For each program (or translator), look up the ddname substitution list (usually

in the Programmer’s Guide for the compiler), or list the ddnames used by the

program.

5. For each program or translator, write an FLMTRNSL macro followed by

FLMALLOC macros (one for each ddname to be allocated for the translator).

Use the information in the program documentation to determine which

IOTYPE value to specify as well as which other FLMALLOC keywords are

appropriate.

102 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

6. Write a sample architecture definition and send it to your users. Describe to

your users how to convert a JCL file of linkage editor control statements into

architecture definitions.

7. Place the application under SCLM control.

This section is an illustration of the process for defining a language to SCLM. As

you progress through the definition, you will code SCLM macros with the

information SCLM needs to control Finnoga 4 modules. You will place this code

into a member of the PROJDEFS.SOURCE data set called @FINNOGA. Language

definitions such as @FINNOGA are usually referenced in the code for a project

definition by means of the COPY statement.

Step 1.

Define the language.

 The first step is to tell SCLM that you are defining a new language. To do

so, code the following FLMLANGL macro:

 FLMLANGL LANG=FINNOGA,VERSION=FINN4

In this example, values are specified for two parameters. The default

values are used for the other parameters.

Parameter Description

LANG= Specifies the language name a user must enter on the

SPROF panel or on the Migrate Utility panel to request

that this language definition be used to drive build and

parse operations of the Finnoga 4 modules.

VERSION= Identifies the specific release of the current Finnoga 4

compiler. If you install a new release or version of the

Finnoga 4 compiler, you can set this parameter to a

different value so that SCLM can mark all Finnoga 4

modules needing to be rebuilt. You must then re-assemble

and link your project definition.

Step 2.

Define include sets for the language to identify the locations of included

members.

 After the language is defined, you can specify where SCLM finds included

members for the Finnoga 4 language. In the following example, the

FLMINCLS macro is used to list the types that are searched for includes:

 FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

In this example, the TYPES parameter of the FLMINCLS macro is used to

tell SCLM where to look for includes. Because no name is specified, this

definition applies to the default include set.

Parameter Description

FLMINCLS name

Specifies the name of the include set that uses this

definition. If no name is specified (as in this example), the

definition is associated with the default include set. An

include set defines a search path for all includes associated

with that include set. Multiple include set s can be

specified in a language definition if the parser and

compiler support distinguishing one kind of include from

another. For the parser, this means that the syntax of the

Chapter 5. Language Definition Considerations 103

language must support determining which include set an

include belongs to. For the compiler, this means that a

separate ddname must be used for each different include

set (kind of include).

 Two include sets are useful when the standard language

includes are kept in one Type and the “EXEC SQL”

includes are kept in another Type. A parser can be written

to determine which include set each include is in. The

language definition then associates a ddname from the

build translators with the appropriate include set name.

TYPES= Specifies the name(s) of the types which are searched to

find includes. In this case, the “INCLUDE” type is

searched first. The @@FLMTYP SCLM variable indicates

that the type of the member that is processed by the

Finnoga 4 compiler is to be searched next. For example, if

’EXAMPLE.USERX.SOURCE(PROGA)’ is going to be

compiled, SCLM looks for includes first in the data sets

associated with the INCLUDE type and then the SOURCE

type.

Step 3.

Specify the programs that process the modules.

 Next, identify the programs that are used to parse and build the Finnoga 4

modules. There are usually two such programs: a parser and the compiler.

For each of these programs, code an FLMTRNSL macro and the

appropriate FLMALLOC macros and FLMCPYLB macros.

 Assume that you have written your own parser and that it is in the data

set SCLM.PROJDEFS.LOAD(FINPARSE). The parser requires an option

string @@FLMSIZ,@@FLMSTP,@@FLMLIS, and reads the source from

ddname SOURCE.

 Add this to your language definition:

FLMTRNSL CALLNAM=’FINNOGA PARSER’, C

 FUNCTN=PARSE, C

 COMPILE=FINPARSE, C

 DSNAME=SCLM.PROJDEFS.LOAD, C

 PORDER=1, C

 OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

The parameters included in this example are described as follows:

Parameter Description

CALLNAM= A character string that appears in messages during the specified

FUNCTN (in this case PARSE). This value will assist in recognizing

which translator was executing during the specified FUNCTN.

FUNCTN= The value PARSE tells SCLM that this program is to be invoked

whenever you parse a module with language FINNOGA.

COMPILE= Member name of the load module for the Finnoga 4 parser. Note

that the keyword ″COMPILE″ actually identifies the load module

name of a translator (which may or may not be a compiler).

DSNAME= Names the partitioned data set that contains the Finnoga 4 parser

load module. DSNAME is required when the data set containing

the desired module is not in the system concatenation. DSNAME is

similar to a STEPLIB.

104 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

When more than one data set is to be searched, the TASKLIB

parameter can be used in conjunction with, or as a replacement for,

the DSNAME parameter.

PORDER= The value 1 tells SCLM that this program expects an options string

but not a ddname substitution list.

OPTIONS= Specifies the options string to be passed to the parser. Strings that

start with @@FLM are SCLM variables, and they are replaced by their

current values before the string is passed to the parser.

Since the parser reads its source from a ddname, you must tell SCLM how to

allocate that ddname. To do this, use an FLMALLOC macro and an FLMCPYLB

macro.

FLMALLOC IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMDSN(@@FLMMBR)

A description of the parameters follows:

Parameter Description

IOTYPE=A Tells SCLM to allocate a ddname to one, or a concatenation of,

specific data set(s). Each of those data sets are subsequently

identified by using an FLMCPYLB macro.

DDNAME= Identifies the ddname to be allocated.

@@FLMDSN(@@FLMMBR)

Identifies the member to be parsed. When the two SCLM variables

are resolved, you get the member of the data set in which you are

interested.

Now you can tell SCLM how to invoke the Finnoga 4 compiler. To do so, use an

FLMTRNSL macro followed by one or more FLMALLOC and FLMCPYLB macros.

FLMTRNSL CALLNAM=’FINNOGA 4’, C

 FUNCTN=BUILD, C

 COMPILE=FNGAA40, C

 PORDER=3, C

 GOODRC=0, C

 OPTIONS=’SOURCE,NOMACRO,OBJ(@@FLMMBR),’, C

 PARMKWD=PARM1

You can specify only a few of the parameters and let SCLM supply default values

for the others:

Parameter Description

CALLNAM= Names the compiler. This name appears in build messages.

FUNCTN= Tells SCLM that this program gets invoked whenever you want to

build a member with language FINNOGA.

COMPILE= Identifies the load module name for the Finnoga 4 compiler.

DSNAME= If you do not specify a DSNAME value, SCLM assumes that the

load module can be found in the system concatenation.

PORDER= The value 3 tells SCLM to pass an options string and a ddname

substitution list to the Finnoga 4 compiler.

GOODRC= The value 0 indicates that SCLM is to consider this build

unsuccessful if the compiler completes with any return code

greater than 0.

Chapter 5. Language Definition Considerations 105

OPTIONS= Specifies the options string to be passed to the compiler. At

compiler run time, the SCLM variable @@FLMMBR is resolved to

the member name being built.

PARMKWD= The value PARM1 specifies the concatenation of the contents of the

PARM1 parameters in the architecture definition to the preceding

options string. Use the PARM1 parameter to specify the

OPTIMIZE/NOOPTIMIZE option for each member. An example of

this is provided later in this section.

 As discussed previously, the Finnoga 4 compiler uses 7 ddnames and also supports

a ddname substitution list. The preceding parser invocation definition showed how

to define a translator (the parser) that does not use a ddname substitution list. The

following SCLM FLMALLOC macros are used by SCLM to construct the ddname

substitution list shown in Table 13 on page 102.

When you use a ddname substitution list, you must define the ddnames in the

order in which they are expected to appear in the ddname substitution list by the

translator. The first ddname defined is placed by SCLM into position 1 in the

ddname substitution list. The second ddname specified is placed into position 2 in

the ddname substitution list, and so on.

Note that you do not have to specify any ddnames in the following example

macros. SCLM will create temporary unique ddnames and place them into the

ddname substitution list positions. Because of the way ddname substitution lists

work, the compiler uses those temporary ddnames instead of the standard

documented ddnames (like SYSIN).

The first ddname in the Finnoga 4’s ddname substitution list is SYSLIN. It is

allocated to a partitioned data set into which the compiler places the object

module.

FLMALLOC IOTYPE=P,KEYREF=OBJ,DFLTTYP=OBJ,RECFM=FB,LRECL=80, C

 RECNUM=5000

The parameters specified in this macro are described as follows:

Parameter Description

IOTYPE=P The compiler is written in such a way that a partitioned data set

must be allocated to this ddname. The compiler will write to a

member of this partitioned data set. SCLM creates a temporary

PDS and allocates it to a temporary ddname (since no DDNAME

keyword was specified).

 This example illustrates two points. It shows how to define a

temporary PDS for output from a translator and emphasizes that

each compiler (or parser) that you define to SCLM may be slightly

different from any other translator you have defined to SCLM.

 Always refer to the translator documentation when defining a

translator to SCLM.

KEYREF=OBJ To save what is written to this ddname and keep it under SCLM

control, SCLM must be able to determine the member name and

the SCLM-controlled data set name in which it is to save this

output module. If SCLM is building an architecture definition, it

determines the project, group, type and member as follows:

v The high-level qualifier is the project identifier that was

previously specified.

106 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

v The group is the level at which the build is taking place. The

group name is the second qualifier.

v SCLM looks at the architecture definition being built and

retrieves the member and type from the architecture statement

associated with the keyword OBJ. The type name is the third

qualifier.

DFLTTYP=OBJ

To save what is written to this ddname and keep it under SCLM

control, SCLM must be able to determine the member name and

the SCLM-controlled data set name in which it is to save this

output module. If SCLM is building a source member, it

determines the project, group, type and member as follows:

v The high-level qualifier is the project identifier that was

previously specified.

v The group is the level at which the build is taking place.

v The type is the value of the DFLTTYP= keyword.

v The member name defaults to the name of the member being

built.

If SCLM is building an architecture definition (and not a source

member directly) then the DFLTTYP= value is ignored. Instead,

SCLM uses the type associated with the KEYREF= value.

RECFM=FB Specifies the record format of the temporary data set that SCLM

creates. In this example, the record format is fixed block.

LRECL=80 Specifies the record length, in characters, of the temporary data set

that SCLM creates.

RECNUM=5000

Tells SCLM to allocate enough space in this data set to hold 5000

records (records that are fixed block and 80 characters in length).

Positions 2 and 3 in the ddname substitution list are not used. Create two

FLMALLOC macros with IOTYPE=N to tell SCLM to fill those name fields with

hex zeros and to continue to the next ddname.

FLMALLOC IOTYPE=N

*

FLMALLOC IOTYPE=N

The ddname in position 4 of the ddname substitution list must be allocated to one

or more partitioned data sets. This ddname is used by the Finnoga 4 compiler to

find included members. The FLMINCLS macro described earlier needs to be

referenced here to ensure that the compiler is picking up includes from the correct

data sets. Since IOTYPE=I allocations default to the default include set shown

earlier, this is automatically done. If another name was used on the FLMINCLS

macro, that name needs to be referenced here using the INCLS parameter.

IOTYPE=I allocates a ddname with a concatenation of all the PDS’s in the

hierarchy starting with the group specified for the BUILD and ending with the top,

or production level, group. First the hierarchy for the INCLUDE type is allocated,

followed by the type of the first SINCed member from the architecture definition,

or, if no architecture definition is used, the type of the member being built.

FLMALLOC IOTYPE=I,KEYREF=SINC

The parameters used with this macro are as follows:

Parameter Description

Chapter 5. Language Definition Considerations 107

IOTYPE=I Allocate this ddname to a concatenation of SCLM-controlled data

sets. The types used in the concatenation are determined by the

FLMINCLS macro referenced by the INCLS= parameter on the

FLMALLOC macro. In this case, there is no INCLS= parameter so

the default FLMINCLS (or include set) is used.

 A hierarchy of data sets is concatenated for each type specified for

the referenced FLMINCLS macro. The hierarchy begins at the

group where the build is taking place and extends to the top of the

project’s hierarchy. In this case, the concatenation first contains all

of the data sets for the INCLUDES type followed by the data sets

for the value substituted into the @@FLMTYP variable. See the

KEYREF= parameter to determine the value which is substituted

into the @@FLMTYP and @@FLMETP variables.

KEYREF=SINC

If you are building an architecture definition, refer to the first SINC

statement in that architecture definition for the type that is

substituted into the @@FLMTYP macro. The value for @@FLMETP

comes from the EXTEND= parameter of the FLMTYPE macro for

that type. If you are not building an architecture definition, the

type is the type of the member being built.

The next ddname in the ddname substitution list is allocated to the source to be

compiled

FLMALLOC IOTYPE=S,KEYREF=SINC

The parameters used in the example are as follows:

Parameter Description

IOTYPE=S Tells SCLM to allocate a temporary sequential data set.

KEYREF=SINC

If you are building a source module directly, SCLM copies that

member to this temporary data set. If you are building a CC

architecture definition, SCLM copies the members listed on the

SINC statement to this data set.

Next, define the SYSPRINT ddname to SCLM.

FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=125, C

 RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

This definition contains the following parameters:

Parameter Description

IOTYPE=O Specifies that the compiler writes to this ddname using a

sequential data set. SCLM creates a temporary sequential data set

and allocates it to a temporary ddname (since this is part of a

ddname substitution list).

KEYREF=LIST

Refers SCLM to the LIST record in the architecture definition being

built. That record contains the member name and type into which

the listing is saved after a successful build. (SCLM copies the data

from the temporary data sets into members of the PDS’s controlled

by SCLM after a successful build.)

108 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

DFLTTYP=FINLIST

Specifies the data set type into which this listing is written

whenever a Finnoga 4 module is built directly or when using

INCLD in an architecture definition.

PRINT=Y Specifies that this is a listing that should be copied to the Build

List data set after the build process completes.

Although the next position in the ddname substitution list is not used, you still

need to tell SCLM what to put there. Create another FLMALLOC with IOTYPE=N:

 FLMALLOC IOTYPE=N

Next, specify the FINLIB data set allocation to SCLM. Specifically, indicate that the

Finnoga 4 library resides in a data set named SYS1.FINNOGA.LIB:

 FLMALLOC IOTYPE=A

 FLMCPYLB SYS1.FINNOGA.LIB

Finally, note that position 9 in the ddname substitution list, like position 7, is not

used:

 FLMALLOC IOTYPE=N

The last two ddnames in the ddname substitution list for the Finnoga 4 compiler

are temporary work data sets. Use IOTYPE=W for temporary work data sets, such

as SYSUT1, SYSUT2, and so on. In addition, specify the record format and length

of the two files, as shown in the following example:

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

When you have completed all these steps you will have a language definition

similar to the following one. (Figure 32 on page 110 contains comments to explain

the flow of operations.) When you are ready to reassemble your project definition,

add a COPY statement in your main project definition file to include these macros.

Chapter 5. Language Definition Considerations 109

**

* FINNOGA 4 LANGUAGE DEFINITION

**

*

 FLMLANGL LANG=FINNOGA,VERSION=FINN4

*

**

* TYPES TO SEARCH FOR INCLUDES

**

*

 FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

*

**

* PARSE TRANSLATOR DEFINITION

**

*

 FLMTRNSL CALLNAM=’FINNOGA PARSER’, C

 FUNCTN=PARSE, C

 COMPILE=FINPARSE, C

 DSNAME=SCLM.PROJDEFS.LOAD, C

 PORDER=1, C

 OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

*

* -- SOURCE --

*

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

**

* BUILD TRANSLATOR DEFINITION

**

*

 FLMTRNSL CALLNAM=’FINNOGA 4’, C

 FUNCTN=BUILD, C

 COMPILE=FNGAA40, C

 GOODRC=0, C

 PORDER=3, C

 OPTIONS=’SOURCE,NOMACRO,OBJ(@FLMMBR),’, C

 PARMKWD=PARM1

*

* -- (1) OBJECT

*

 FLMALLOC IOTYPE=P,KEYREF=OBJ,DFLTTYP=OBJ,RECFM=FB,LRECL=80, C

 RECNUM=5000

*

* -- (2) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (3) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (4) INCLUDE LIBRARIES

*

 FLMALLOC IOTYPE=I,KEYREF=SINC

*

* -- (5) SOURCE

*

 FLMALLOC IOTYPE=S,KEYREF=SINC

*

* -- (6) LISTING

*

 FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=125, C

 RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

Figure 32. Finnoga 4 Language Definition (Part 1 of 2)

110 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Showing Users How to Write CC Architecture Definitions

Once you have written the language definition, and assembled and link-edited the

project definition, your users can use SCLM to build their Finnoga 4 applications.

To do so, however, they must know what information to supply in their

architecture definitions. Table 14 lists the SCLM-controlled inputs and outputs for

the Finnoga 4 build. It includes the ddnames of the data sets that are input to and

output from the Finnoga 4 compiler. In addition, a KEYREF value and brief

description of each ddname is given.

 Table 14. DDnames and KEYREFs

ddname KEYREF Description of data set(s) allocated

SYSLIN OBJ A partitioned data set into which the Finnoga 4 compiler

writes the object module. The OBJ keyword in the

compiler’s option string specifies the member name to use.

SYSLIB SINC One or more partitioned data sets through which the

Finnoga 4 compiler searches for include members.

SYSIN SINC A sequential data set that contains Finnoga 4 source to be

compiled.

SYSPRINT LIST A sequential listings data set. The Finnoga 4 compiler

writes out a copy of the source that was compiled along

with any error, warning, and informational messages.

In addition, the PARM1 parameter is used in the FLMTRNSL macro for the

Finnoga 4 compiler.

When your users write CC architecture definitions for their Finnoga 4 applications,

they must include each of the preceding KEYREFs. A typical Finnoga 4 CC

architecture definition looks like this:

*

* -- (7) NOT USED

*

 FLMALLOC IOTYPE=N*

* -- (8) FINNOGA COMPILER LIBRARIES

*

 FLMALLOC IOTYPE=A

 FLMCPYLB SYS1.FINNOGA.LIB

*

* -- (9) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (10) WORK FILE

*

 FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

* -- (11) WORK FILE

*

 FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 32. Finnoga 4 Language Definition (Part 2 of 2)

Chapter 5. Language Definition Considerations 111

SINC PROG SOURCE

SINC SUB1 SOURCE

OBJ PROG OBJ

LIST PROG FINLIST

PARM1 OPTIMIZE

This CC architecture definition, along with the language definition previously

written, tells SCLM to compile the concatenation of Finnoga 4 members PROG and

SUB1 in data set type SOURCE. The resulting object module and listing are to be

saved in data set types OBJ and FINLIST, respectively. When the source is

compiled, you want to use the OPTIMIZE compiler option.

You do not have to specify the modules that are included from ddname SYSLIB.

Simply allocate SYSLIB to the proper libraries (with an IOTYPE=I) and the

compiler will find the included members.

This simple template is all you have to give to your users. When they edit their

Finnoga 4 source, they need to specify FINNOGA as the language name. Then they

create their architecture definitions like the preceding one. SCLM and the language

definition you created will perform the rest of the work.

Convert Your JCL Decks to Architecture Definitions

Suppose your Finnoga 4 users have a library of JCL that they have been using to

compile their Finnoga 4 source. The following example uses a sample Finnoga 4

compile job and shows how you would write an architecture definition with the

information in the JCL. The JCL deck that you use might look like this:

//JOB ...

//FINNOGA EXEC PGM=FNGAA40,

// PARM=’SOURCE,NOMACRO,OBJ(PROG1),NOOPTIMIZE’

//SYSLIN DD DSN=USER02.PRIVATE.OBJ,DISP=OLD

//SYSLIB DD DSN=USER02.PRIVATE.FINNOGA,DISP=SHR

//SYSIN DD DSN=USER02.PRIVATE.FINNOGA(MAIN),DISP=SHR

// DD DSN=USER02.PRIVATE.FINNOGA(SUB1),DISP=SHR

// DD DSN=USER02.PRIVATE.FINNOGA(SUB2),DISP=SHR

//SYSPRINT DD SYSOUT=A

//FINLIB DD DSN=SYS1.FINNOGA.LIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),

// SPACE=(TRK,(10,10))

//SYSUT2 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),

// SPACE=(TRK,(10,10))

In this example, you want SCLM to control the modules that are input or output

through ddnames SYSIN, SYSLIN, and SYSPRINT. For the Finnoga 4 language

definition, the keywords SINC, OBJ and LIST have been assigned to those

modules. You create the architecture definition by listing the modules involved in

the build and identifying their roles with the keywords SINC, OBJ, and LIST. In

addition, you tell SCLM to concatenate the NOOPTIMIZE option to the end of the

OPTIONS string being passed to the translator using the PARM1 keyword.

SINC MAIN SOURCE

SINC SUB1 SOURCE

SINC SUB2 SOURCE

OBJ PROG1 OBJ

LIST MAIN FINLIST

PARM1 NOOPTIMIZE

Now you are prepared to move this application under SCLM control:

112 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

1. Copy the members MAIN, SUB1, and SUB2 from

’USER02.PRIVATE.FINNOGA’ to a development group in the SCLM project

hierarchy. In this example, the data set type is SOURCE. You should also copy

over any included source members.

2. Use the SCLM Migration Utility to migrate your source members using the

language name FINNOGA (the name specified on the FLMLANGL macro).

3. Use the SCLM editor to create the architecture definition. Unless you have

modified the ARCHDEF language definition, the language of this architecture

definition should be ARCHDEF. SCLM asks for the language name when you

first enter the SAVE or END edit command.

Your user is now ready to compile this application using SCLM. The source

members are under SCLM control as are the architecture definitions. The object

module and the Finnoga 4 listing have not yet been created. To build this

application, select Build (option 10.4) from the SCLM Main Menu and enter the

project, group, type, and member name of the architecture definition (ARCHDEF).

Defining a Preprocessor to SCLM

Suppose that some of your Finnoga 4 users run a preprocessor step on their

Finnoga 4 source before compiling it. How do you define that two-step build

process to SCLM? Using another fictitious product, the Panda Universal

Preprocessor (PUPP), you can specify that some Finnoga 4 source is to be run

through PUPP before it gets compiled.

Again, you need to list the ddnames used by the translator you want to define. In

this case, assume that PUPP uses three ddnames:

 Table 15. DDnames Used by a Hypothetical Preprocessor

DDname Description of file(s) allocated

SYSIN A sequential data set containing the Finnoga 4 source to be preprocessed.

SYSOUT A sequential data set to which the preprocessed Finnoga 4 source is

written. You want to compile the contents of this data set.

SYSPRINT A listing data set containing Panda Universal Preprocessor messages and

warnings.

In this example, the ddnames are not numbered because you will not use the

PUPP ddname substitution list. Instead, you will use the ddname substitution list

supported by the Finnoga 4 compiler to link the two build steps together.

Your users want SCLM to keep the listing data set produced by PUPP, but they do

not want to keep the intermediate copy of the preprocessed source (the output in

SYSOUT). The preprocessed source should be passed to the Finnoga 4 compiler

and then deleted.

Because you want to preprocess some but not all of the Finnoga 4 source, you

should define two different build processes to SCLM. You have already defined the

latter build process (for language FINNOGA), and you will not change that

language definition. For the two-step build process, however, you will create a new

language definition with a different language name. The users must assign the

correct language name to each Finnoga 4 source member.

Chapter 5. Language Definition Considerations 113

The new language definition is very much like the first language definition, so you

can copy the first definition into a second PROJDEFS.SOURCE member and

modify it there.

The new language definition (copied from the first definition) has two FLMTRNSL

macros: one for the parser, and the other for the Finnoga 4 compiler. You will add

a third FLMTRNSL for the preprocessor, using the same macros and keywords as

you used in the previous example. Enter this example before the FLMTRNSL for

the Finnoga 4 compiler and after the last FLMALLOC for the parser. The order of

execution is then parse, preprocess, and compile.

 The following list describes the keywords that change so you can invoke the new

language definition:

Keyword Description

FUNCTN= Identifies this translator as a build translator. There are now two

build translators in this language definition: one for PUPP and one

for the Finnoga 4 compiler. Define the PUPP translator first and the

Finnoga 4 translator second to tell SCLM the order in which the

translators are to be invoked.

OPTIONS= Specifies the options string to be passed to the PUPP compiler. In

this case, you do not want the trace option activated.

DDNAME= Specify the DDNAME= keyword because you are not using a

ddname substitution list to pass ddnames to PUPP. This parameter

specifies which ddnames to allocate (the ddnames that PUPP uses).

IOTYPE=W Specifies that ddname SYSOUT is to be allocated as a work file. In

this example, the users do not want to save the processed source.

When the build completes, this file is deleted. In a later step, this

file is passed to the Finnoga 4 compiler.

KEYREF=OUT1

Specifies that the listing PUPP writes to ddname SYSPRINT is to

be saved under SCLM control. You usually use KEYREF=LIST for

this purpose. However, KEYREF=LIST is already being used by the

 FLMTRNSL CALLNAM=’PANDA U PREP’, C

 FUNCTN=BUILD, C

 COMPILE=PANDA01, C

 GOODRC=0, C

 PORDER=1, C

 OPTIONS=’NOTRACE’

*

* -- SOURCE

*

 FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN

*

* -- PREPROCESSED SOURCE

*

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000, C

 DDNAME=SYSOUT

*

* -- LISTING

*

 FLMALLOC IOTYPE=O,KEYREF=OUT1,RECFM=VBA,LRECL=125, C

 RECNUM=5000,PRINT=Y,DFLTTYP=PUPLIST,DDNAME=SYSPRINT

*

Figure 33. Panda Universal Preprocessor

114 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

translator definition for the Finnoga 4 compiler. Because you have

already used the standard set of CC ARCHDEF keywords, you

must use the OUTx keywords.

 OUTx keywords are used to identify additional build outputs. You

can use OUT0, OUT1,...,OUT9 to specify additional outputs that

SCLM is to control.

PRINT=Y This listing and the Finnoga 4 listing are both written to the build

listing data set.

Passing the Source to the Compiler

You must next make one change to the macros that define how to invoke the

Finnoga 4 compiler. The source to be compiled no longer comes directly from the

SCLM-controlled source libraries. Instead, you want SCLM to take the

preprocessed source that PUPP writes to ddname SYSOUT and pass it to the

Finnoga 4 compiler. This requires a change to the FLMALLOC macro that defines

the ddname that gets put into the SYSIN position in the ddname substitution list

for the Finnoga 4 compiler. The new macro is illustrated as follows:

*

* -- (5) SOURCE

*

 FLMALLOC IOTYPE=U,DDNAME=SYSOUT

You use a different IOTYPE value (IOTYPE=U) to indicate that the ddname to be

placed in the ddname substitution list has already been allocated in a previous

build step. In this case, DDNAME=SYSOUT tells SCLM to place the name SYSOUT

in position 5 of the ddname substitution list and go on to the next ddname. When

the Finnoga 4 compiler runs, it reads the source from ddname SYSOUT.

The new language definition is shown in Figure 34 on page 116. Note that the new

language has been specified on the FLMLANGL macro.

Chapter 5. Language Definition Considerations 115

**

* FINNOGA 4 LANGUAGE DEFINITION

**

*

 FLMLANGL LANG=FINPUPP,VERSION=FINN4

*

**

 TYPES TO SEARCH FOR INCLUDES

**

*

 FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

*

**

* PARSE TRANSLATOR DEFINITION

**

*

 FLMTRNSL CALLNAM=’FINNOGA PARSER’, C

 FUNCTN=PARSE, C

 COMPILE=FINPARSE, C

 DSNAME=SCLM.PROJDEFS.LOAD, C

 PORDER=1, C

 OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

*

* -- SOURCE --

*

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

*

**

* BUILD TRANSLATOR DEFINITION

**

*

* PREPROCESSOR STEP

*

 FLMTRNSL CALLNAM=’PANDA U PREP’, C

 FUNCTN=BUILD, C

 COMPILE=PANDA01, C

 GOODRC=0, C

 PORDER=1, C

 OPTIONS=’NOTRACE’

*

* -- SOURCE

*

 FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN

*

* -- PREPROCESSED SOURCE

*

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000, C

 DDNAME=SYSOUT

*

* -- LISTING

*

 FLMALLOC IOTYPE=O,KEYREF=OUT1,RECFM=VBA,LRECL=125, C

 RECNUM=5000,PRINT=Y,DFLTTYP=PUPLIST,DDNAME=SYSPRINT

*

* COMPILE STEP

*

 FLMTRNSL CALLNAM=’FINNOGA 4’, C

 FUNCTN=BUILD, C

 COMPILE=FNGAA40, C

 GOODRC=0, C

 PORDER=3, C

 OPTIONS=’SOURCE,NOMACRO,OBJ(@FLMMBR)’, C

 PARMKWD=PARM1

Figure 34. Finnoga/PUPP Language Definition (Part 1 of 2)

116 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The following example illustrates an architecture definition to build a program

using two translators:

*

* -- (1) OBJECT

*

 FLMALLOC IOTYPE=P,KEYREF=OBJ,DFLTTYP=OBJ,RECFM=FB, C

 LRECL=80,RECNUM=5000

*

* -- (2) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (3) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (4) INCLUDE LIBRARIES

*

 FLMALLOC IOTYPE=I,KEYREF=SINC

*

* -- (5) SOURCE

*

 FLMALLOC IOTYPE=U,DDNAME=SYSOUT

*

* -- (6) LISTING

*

 FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=VBA,LRECL=125, C

 RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

*

* -- (7) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (8) FINNOGA COMPILER LIBRARIES

*

 FLMALLOC IOTYPE=A

 FLMCPYLB SYS1.FINNOGA.LIB

*

* -- (9) NOT USED

*

 FLMALLOC IOTYPE=N

*

* -- (10) WORK FILE

*

 FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

* -- (11) WORK FILE

*

 FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 34. Finnoga/PUPP Language Definition (Part 2 of 2)

SINC PROG7 SOURCE

OBJ PROG7 OBJ

LIST PROG7 FINLIST

OUT1 PROG7 PUPLIST

PARM1 NOOPTIMIZE

Figure 35. Architecture Definition Example

Chapter 5. Language Definition Considerations 117

The only difference between this architecture definition and the Finnoga 4 CC

architecture definition is the presence of the OUT1 keyword. This keyword

specifies the type and member into which the PUPP listing is saved. In addition to

specifying the OUT1 keyword in their architecture definitions, users who use this

language definition to build their Finnoga 4 source must also remember to specify

the language name FINPUPP for that Finnoga 4 source in the FLMLANGL macro

statement.

Converting JCL to SCLM Language Definitions

Many sites use Job Control Language (JCL) to run preprocessors, compilers,

linkage editors, and other tools used in the development process. SCLM supports

developers and project managers through the use of language definitions that tell

SCLM how to parse, build, and promote members of an SCLM-controlled data set.

Language definitions can also specify additional translators to execute for the

COPY, PURGE, and VERIFY functions. Because the SCLM language definitions

provide an easier method of implementing processing control than JCL does, many

sites have found it beneficial to convert their JCL to SCLM language definitions. To

ease the conversion process, SCLM provides sample language definitions that you

can tailor to the special needs of your site.

This section explains how to construct SCLM language definitions to replace

existing JCL decks. Examples illustrate the basic principles underlying a successful

migration from JCL to SCLM and also demonstrate methods for avoiding potential

problems and conflicts.

Before You Begin

Before you try to convert your existing JCL decks to SCLM language definitions,

you must obtain and review ″expanded″ listings of the JCL. The ″expanded JCL″

listings allow you to determine the actual values of the symbolic parameters in the

JCL; these values include data set names, options, and other information that is

required for successful translation to an SCLM language definition. You will also

need to know the order in which programs are executed in the JCL, and the

condition codes that are expected from each program. Your system administrator

should be able to help you locate this information.

You should also review the information provided about SCLM macros in the z/OS

ISPF Software Configuration and Library Manager Reference, paying special attention

to the following macros and their parameters:

v FLMTRNSL

v FLMTCOND

v FLMALLOC

v FLMCPYLB

v FLMINCLS

v FLMTOPTS

Capabilities and Restrictions

There are two basic equivalencies that you will use to convert JCL cards to SCLM

macro statements:

v Every JCL EXEC card with PGM=abc will correspond to an FLMTRNSL macro

with COMPILE=abc in your language definition. Conditional execution of

BUILD translators may be addressed through use of the FLMTCOND macro.

118 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

v Every JCL DD card will correspond to an FLMALLOC macro and/or an

FLMSYSLB macro associated with an FLMALLOC macro in your language

definition.

In the case of STEPLIB, the JCL DD card will correspond to the DSNAME

parameter in the FLMTRNSL macro. A STEPLIB concatenation of more than one

data set would use the TASKLIB parameter. The TASKLIB parameter is set to the

ddname associated with the data set concatenation. FLMCPYLBs are used to

specify the data sets on an FLMALLOC macro with DDNAME set to the

TASKLIB ddname. When both DSNAME and TASKLIB are specified, the

DSNAME data set is searched first, followed by the TASKLIB data sets, followed

by the system concatenation.

In the case of SYSLIB-type ddnames for a compiler, the data sets must be

specified FLMSYSLBs. Then either ALCSYSLB=Y must be specified on the

FLMLANGL macro and/or FLMCPYLBs must be specified for the appropriate

FLMALLOC macros. For an example of this, refer to the COBOL (FLM@COB2)

or C/370 (FLM@C370) language definitions supplied with SCLM.

Three areas of restrictions can prevent a simple, one-to-one translation of JCL cards

to SCLM macro statements:

v Backward referencing of data definition names (DDs)

If a JCL DD card uses the “refer back” technique to reference a previous DD

card (other than the card in the preceding step), or if a DD card refers to a data

set using a ddname that differs from the data set’s ddname in a prior step,

conversion to an SCLM language definition can involve the use of an

intermediate translator or a ddname substitution list in order to allocate the

correct data set name for the program. (An intermediate translator is not needed

if the succeeding translator supports DDNAME substitution lists; in this case,

the succeeding translator can “hard code” the DDNAME and use IOTYPE=U on

the FLMALLOC macro.)

v Complex conditional execution

A JCL deck that specifies skipping all steps after a specified condition code from

one or more previous steps is directly converted to appropriate FLMTRNSL

macros with appropriate GOODRC values. Other conditional executions of

BUILD translators can be addressed by using the FLMTCOND macro. For

example, if the JCL is set up to run BUILD translator X if any previous return

code is 4, but run Build translator Y if any previous return code is 8, you can

use the FLMTCOND macro. FLMTCOND is only valid for use with BUILD

translators. Conditional execution of non-BUILD translators can require

modification of the translators or interface programs to handle the control of

execution.

v TSO Address Space compatibility

Some programs that run from JCL will not run in the TSO Address Space in

which SCLM resides without a special interface translator. IBM has provided

interface programs for several common IBM programs with this characteristic.

For example, the FLMTMSI (SCRIPT), FLMTMJI (JOVIAL), and FLMTMMI

(DFSUNUB0) translators all use the TSO Service Facility IKJEFTSR.

If you have JCL that runs program XYZ without any errors, but fails when you

try to run program XYZ from an FLMTRNSL macro, this may be the problem.

You must write a translator to call the program using IKJEFTSR.

The following sections describe how to convert JCL cards and decks into

functionally equivalent SCLM language definitions and provide suggested

strategies for working around restrictions and conflicts.

Chapter 5. Language Definition Considerations 119

Converting JCL Cards to SCLM Macro Statements

This section contains examples of JCL decks and their SCLM language definition

equivalents.

Executing Programs

The SCLM FLMTRNSL macro is similar to a JCL EXEC (EXECUTE) card. Figure 36

shows a single JCL card that runs a program named IEFBR14.

 Figure 37 shows an SCLM FLMTRNSL macro that performs the same task as the

JCL card in Figure 36.

 FLMTRNSL’s COMPILE option specifies the name of the program to execute

(IEFBR14.) The FUNCTN parameter specifies here that IEFBR14 will be invoked

when the user requests a BUILD, and the PORDER value of 0 tells SCLM that

neither an option list nor a ddname substitution list will be passed to IEFBR14.

Figure 38 is a slightly more complex example. We want to use a translator program

named GAC to copy the contents of TSOSCxx.DEV1.SOURCE(MEMBER1) into

TSOSCxx.DEV1.LIST(MEMBER1). The GAC program itself requires a SYSIN data

set, which is empty in this example.

 Figure 39 shows the SCLM language definition that performs the same task as the

JCL in Figure 38.

 As before, the FLMTRNSL macro is used to specify the name of the program to

run. The FLMALLOC and FLMCPYLB statements allocate the existing data sets to

ddnames.

//STEP1 EXEC PGM=IEFBR14

Figure 36. JCL: Execute IEFBR14

FLMTRNSL COMPILE=IEFBR14,FUNCTN=BUILD,PORDER=0

Figure 37. SCLM: Execute IEFBR14

//STEP1 EXEC PGM=GAC

//SYSIN DD DUMMY

//INPUT DD DSN=TSOSCxx.DEV1.SOURCE(MEMBER1),DISP=SHR

//OUTPUT DD DSN=TSOSCxx.DEV1.LIST(MEMBER1),DISP=SHR

Figure 38. JCL: Execute GAC

FLMTRNSL COMPILE=GAC,FUNCTN=BUILD,PORDER=0

FLMALLOC IOTYPE=A,DDNAME=SYSIN

 FLMCPYLB NULLFILE

FLMALLOC IOTYPE=A,DDNAME=INPUT

 FLMCPYLB TSOSCxx.DEV1.SOURCE(MEMBER1)

FLMALLOC IOTYPE=A,DDNAME=OUTPUT

 FLMCPYLB TSOSCxx.DEV1.LIST(MEMBER1)

Figure 39. SCLM Language Definition: Execute GAC

120 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Conditional Execution

In Figure 40, program XYZ runs only if the return code from program ABC is less

than five.

 In SCLM, the GOODRC parameter on the FLMTRNSL macro allows you to specify

return code values for conditional execution. In Figure 41, the GOODRC parameter

for program ABC is set to 4. If ABC ends with a return code greater than four,

processing ends; program XYZ will not execute.

 In Figure 42, program XYZ runs only if the return code from program ABC is less

than 5. Program MBS is to execute after program XYZ regardless of the previous

return codes.

 In SCLM, the GOODRC parameter on the FLMTRNSL macro specifies when to

skip all remaining translators in the language definition. In Figure 43 the

FLMTCOND macro is used so that execution may skip program XYZ but continue

with program MBS.

Sample JCL Conversion

This section contains commented sample JCL and language definitions that

perform the same tasks: invoking the CICS preprocessor and then invoking the OS

COBOL compiler to produce an object module. Figure 44 on page 124 contains the

JCL used to accomplish these tasks; Figure 45 on page 126 contains the equivalent

SCLM language definition. Each sample contains comments with step numbers.

The step descriptions that follow relate a line or command from the JCL to the

equivalent SCLM language definition macro, option, or command.

 1. The JCL has a job step named TRN, which is the first translator called in this

job.

SCLM uses an FLMTRNSL macro to call this translator. This is the first

FLMTRNSL macro for build in the language definition.

 2. Job step TRN executes a program called DFHECP$1, the CICS preprocessor

for OS COBOL.

//STEP1 EXEC PGM=ABC

//STEP2 EXEC PGM=XYZ,COND=(5,GE)

Figure 40. JCL: Conditional Execution

FLMTRNSL COMPILE=ABC,FUNCTN=BUILD,PORDER=0,GOODRC=4

FLMTRNSL COMPILE=XYZ,FUNCTN=BUILD,PORDER=0

Figure 41. SCLM Language Definition: Conditional Execution

//STEP1 EXEC PGM=ABC

//STEP2 EXEC PGM=XYZ,COND=(5,GE)

//STEP3 EXEC PGM=MBS

Figure 42. JCL: Complex Conditional Execution

FLMTRNSL COMPILE=ABC,FUNCTN=BUILD,PORDER=0

FLMTRNSL COMPILE=XYZ,FUNCTN=BUILD,PORDER=0

 FLMTCOND ACTION=SKIP,WHEN=(*,GE,5)

FLMTRNSL COMPILE=MBS,FUNCTN=BUILD,PORDER=0

Figure 43. SCLM Language Definition: Complex Conditional Execution

Chapter 5. Language Definition Considerations 121

SCLM uses the COMPILE=DFHECP$1 statement on the FLMTRNSL macro.

 3. The STEPLIB line in job step TRN tells the job where to find the program

DFHECP$1.

SCLM uses the DSNAME option on the FLMTRNSL macro. Both the STEPLIB

and DSNAME point to the same data set, CICS.V3R2M1.SDFHLOAD.

 4. The SYSIN statement defines the data set that contains the member to

compile.

SCLM uses an FLMALLOC macro to allocate the SYSIN data set to a ddname

for the CICS preprocessor. Because we are using PORDER=1, the FLMALLOC

macro assigns the ddname, SYSIN, that the CICS preprocessor is expecting.

 5. The TRN job step sends the preprocessor listing to the printer using the

SYSPRINT statement.

SCLM uses an FLMALLOC macro to allocate an output data set to the

ddname SYSPRINT.

 6. The SYSPUNCH line in the TRN step creates the output of the CICS

preprocessor and passes it to the next job step (COB) as a temporary file.

SCLM uses an FLMALLOC macro with IOTYPE=W to allocate a work

(temporary) file with the ddname of SYSPUNCH. This work file is passed to

the next job step (FLMTRNSL).

 7. The JCL has a job step named COB, which is the second translator called in

this job.

SCLM uses an FLMTRNSL macro to call this translator. This is the second

FLMTRNSL macro for build in our language definition.

 8. The job step COB executes (EXEC PGM=) a program called IKFCBL00, the

compiler for OS COBOL.

SCLM uses the COMPILE=IKFCBL00 statement on the FLMTRNSL macro.

 9. To pass compiler options to the OS COBOL compiler, the COB job step uses a

PARM= command.

SCLM uses the OPTIONS= statement on the FLMTRNSL macro to perform the

same task.

10. This job has conditional execution for the COB step via the COND(5,GE) JCL

command. The COB step will not execute if the return code of the TRN step is

greater than 4.

SCLM sets the GOODRC keyword parameter for the TRN step (CICS

preprocessor) equal to 4. Build halts execution of all translators following the

TRN step in the language definition if the return code from the TRN step is

greater than 4.

11. The STEPLIB statement in job step COB tells the job where to find the

program IKFCBL00.

SCLM uses the DSNAME= option on the FLMTRNSL macro. Both the

STEPLIB and DSNAME point to the same data set, IKF.V1R2M4.VSCOLIB.

12. The SYSLIB statement in job step COB tells the job where to find the system

type includes.

The language definition uses the FLMSYSLB macro with IOTYPE=I and the

FLMINCLS macro to do the same task.

SCLM allocates these project data sets allocated for IOTYPE=I before the data

sets on the FLMCPYLB macro(s). ALCSYSLB=Y parameter must be specified

on the FLMLANGL macro to ensure that the FLMSYSLB data sets are

allocated to the IOTYPE=I ddnames.

122 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Because PORDER=3 is being used, the SYSLIB DD is the fourth ddname

passed to the compiler in a ddname substitution list. The COBOL compiler

uses the fourth ddname as SYSLIB no matter what value is assigned to the

DDNAME keyword parameter on the FLMALLOC macro.

13. For each system library specified for the SYSLIB DD, the language definition

has an FLMSYSLB macro. In this case both CICS.V3R2M1.SDFHCOB and

CICS.V3R2M1.SDFHMAC are specified.

14. The COB job step sends the compile listing to the printer using the SYSPRINT

statement.

SCLM uses an FLMALLOC macro to allocate an output data set to the

ddname SYSPRINT.

15. In the COB job step, the SYSIN DD statement identifies the data set that

contains the member to compile. This is the output of the CICS preprocessor

step TRN.

SCLM uses an FLMALLOC macro with IOTYPE=U to refer to a ddname from

a prior step. The language definition instructs MVS to allocate the data set

assigned in the TRN step to the ddname SYSPUNCH.

16. The SYSLIN statement in the COB step identifies the output data set for object

code created by the COBOL compiler.

The language definition uses an FLMALLOC macro with IOTYPE=O to

allocate an output file. This FLMALLOC macro is the first in the COB

FLMTRNSL because when using PORDER=3, the OS COBOL compiler expects

the output data set ddname to be first in a ddname substitution list.

17. The COB step allocates SYSUT1 as a temporary work file for the OS COBOL

compiler.

SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to

perform the same task. This must be the eighth file provided to the OS

COBOL compiler because PORDER=3 tells SCLM that we are using a ddname

substitution list.

18. The COB step allocates SYSUT2 as a temporary work file for the OS COBOL

compiler.

SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to

perform the same task. This must be the ninth file provided to the OS COBOL

compiler because we are using a ddname substitution list.

19. The COB step allocates SYSUT3 as a temporary work file for the OS COBOL

compiler.

SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to

perform the same task. This must be the tenth file provided to the OS COBOL

compiler because we are using a ddname substitution list.

20. The COB step allocates SYSUT4 as a temporary work file for the OS COBOL

compiler. SCLM’s language definition uses an FLMALLOC macro with

IOTYPE=W to perform the same task. This must be the eleventh file provided

to the OS COBOL compiler because we are using a ddname substitution list.

21. The COB step allocates SYSUT5 as a temporary work file for the OS COBOL

compiler.

SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to

perform the same task. This must be the twelfth file provided to the OS

COBOL compiler because we are using a ddname substitution list.

22. SCLM language definition only

The language definition uses PORDER=3 for the OS COBOL compiler step

(COB) to use a ddname substitution list. A ddname substitution list provides

Chapter 5. Language Definition Considerations 123

an ordered list (defined by the translator) of ddnames such that the position

of a ddname in the list, and not the actual ddname, is used by the translator

for a specific file.

The input file for the compiler must be the output file from the CICS

preprocessor. The ddname assigned in the TRN step is SYSPUNCH. Because

this file has already been allocated to SYSPUNCH, another way (besides

ddname) is needed to pass this file as the input to the compiler. By using

PORDER=3, SCLM passes all the files that can be used by the OS COBOL

compiler in the order specified for this compiler. To use PORDER=3, a specific

parameter string must be built. The language definition must have an

FLMALLOC macro for each of these parameters.

Those FLMALLOCs that are tagged for STEP 22 are not applicable for the OS

COBOL compiler. SCLM places 8 bytes of hexadecimal zeros into the ddname

substitution list for each FLMALLOC with IOTYPE=N.

//USERIDC JOB (AS05CR,T12,C531),’USERID’,NOTIFY=USERID,CLASS=A,

// MSGCLASS=O,MSGLEVEL=(1,1)

//*

//* THIS PROCEDURE CONTAINS 2 STEPS

//* 1. EXEC THE CICS PREPROCESSOR

//* 2. EXEC THE OS/VS COBOL COMPILER

//*

//* CHANGE THE JOB NAME AND THE ACCOUNTING INFORMATION TO MEET THE

//* REQUIREMENTS OF YOUR INSTALLATION.

//*

//* CHANGE ’PROGNAME’ TO THE NAME OF THE CICS/COBOL PROGRAM YOU

//* WANT TO COMPILE. CHANGE ’USERID’ TO YOUR USERID.

//*

//* CHANGE ’DEVLEV’ TO THE GROUP THAT CONTAINS THE PROGRAM TO BE COMPILED.

//*

//* STEP 1: TRN STATEMENT; STEP 2: EXEC PGM STATEMENT

//*

//TRN EXEC PGM=DFHECP1$,

//*

//* STEP 3: STEPLIB STATEMENT

//*

// REGION=2048K

//STEPLIB DD DSN=CICS.V3R2M1.SDFHLOAD,DISP=SHR//*

//*

//* STEP 4: SYSIN STATEMENT

//*

//SYSIN DD DSN=USERID.DEVLEV.SOURCE(PROGNAME),DISP=SHR

//*

//* STEP 5: SYSPRINT STATEMENT

//*

//SYSPRINT DD SYSOUT=A

//*

//* STEP 6: SYSPUNCH STATEMENT

//*

//SYSPUNCH DD DSN=&&SYSCIN,;

// DISP=(,PASS),UNIT=SYSDA,

// DCB=BLKSIZE=400,

// SPACE=(400,(400,100))

//*

//* STEP 7: COB STATEMENT; STEP 8: EXEC PGM STATEMENT

Figure 44. JCL: Invoke COBOL Preprocessor and Compiler (Part 1 of 2)

124 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

//* STEP 9: PARM STATEMENT; STEP 10: COND STATEMENT

//*

//COB EXEC PGM=IKFCBL00,REGION=2048K,COND=(5,GE),

// PARM=’NOTRUNC,NODYNAM,LIB,SIZE=256K,BUF=32K,APOST,DMAP,XREF’

//*

//* STEP 11: STEPLIB STATEMENT

//*

//STEPLIB DD DSN=IKF.V1R2M4.VSCOLIB,DISP=SHR

//*

//* STEP 12: SYSLIB STATEMENT; STEP 13: DD STATEMENT

//*

//SYSLIB DD DSN=CICS.V3R2M1.SDFHCOB,DISP=SHR

// DD DSN=CICS.V3R2M1.SDFHMAC,DISP=SHR

//*

//* STEP 14: SYSPRINT STATEMENT

//*

//SYSPRINT DD SYSOUT=O

//*

//* STEP 15: SYSIN STATEMENT

//*

//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)

//*

//* STEP 16: SYSLIN STATEMENT

//*

//SYSLIN DD DSN=USERID.DEVLEV.OBJ(PROGNAME),DISP=SHR

//*

//* STEP 17: SYSUT1 STATEMENT

//*

//SYSUT1 DD UNIT=SYSDA,SPACE=(460,(350,100))

//*

//* STEP 18: SYSUT2 STATEMENT

//*

//SYSUT2 DD UNIT=SYSDA,SPACE=(460,(350,100))

//*

//* STEP 19: SYSUT3 STATEMENT

//*

//SYSUT3 DD UNIT=SYSDA,SPACE=(460,(350,100))

//*

//* STEP 20: SYSUT4 STATEMENT

//*

//SYSUT4 DD UNIT=SYSDA,SPACE=(460,(350,100))

//*

//* STEP 21: SYSUT5 STATEMENT

//*

//SYSUT5 DD UNIT=SYSDA,SPACE=(460,(350,100))

Figure 44. JCL: Invoke COBOL Preprocessor and Compiler (Part 2 of 2)

Chapter 5. Language Definition Considerations 125

* SCLM LANGUAGE DEFINITION FOR

* OS COBOL WITH CICS PREPROCESSOR 3.2.1

*

* CICS OUTPUT IS PASSED VIA THE CICSTRAN DD ALLOCATION TO OS COBOL.

*

* POINT THE FLMSYSLB MACRO(S) AT ALL ’STATIC’ COPY DATASETS.

* CUSTOMIZE THE ’OPTIONS’ AND ’GOODRC’ FIELDS TO YOUR STANDARDS.

* ADD THE ’DSNAME’ FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.

* WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS

* LANGUAGE, THE ’VERSION’ FIELD ON FLMLANGL SHOULD BE CHANGED.

*

COBCICS FLMSYSLB CICS.V3R2M1.SDFHCOB

*

 FLMLANGL LANG=COBCICS,VERSION=CICS321,ALCSYSLB=Y

*

* PARSER TRANSLATOR

*

 FLMTRNSL CALLNAM=’SCLM COBOL PARSE’, C

 FUNCTN=PARSE, C

 COMPILE=FLMLPCBL, C

 PORDER=1, C

 OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

*

* BUILD TRANSLATORS

* - CICS PRECOMPILE - STEP NAME TRN

*

* STEP 1

 FLMTRNSL CALLNAM=’CICS PRE-COMPILE’, C

 FUNCTN=BUILD, C

* STEP 2

 COMPILE=DFHECP1$, C

* STEP 3 (* STEPLIB *)

 DSNAME=CICS.V3R2M1.SDFHLOAD, C

 VERSION=2.1, C

* STEP 10 (* COND *)

 GOODRC=4, C

 PORDER=1

* STEP 4 (* SYSIN *)

 FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C

 DDNAME=SYSIN

* STEP 5 (* SYSPRINT *)

 FLMALLOC IOTYPE=O,RECFM=FBA,LRECL=121, C

 RECNUM=35000,PRINT=Y,DDNAME=SYSPRINT

*

* STEP 6 (* SYSPUNCH *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C

 RECNUM=5000,DDNAME=SYSPUNCH

*

* STEP 7 (*COBOL INTERFACE - STEP NAME COB *)

* STEP 8

 FLMTRNSL CALLNAM=’COBOL COMPILE’, C

 FUNCTN=BUILD, C

 COMPILE=IKFCBL00, C

* STEP 11 (* STEPLIB *)

 DSNAME=IKF.V1R2M4.VSCOLIB, C

 VERSION=1.0, C

 GOODRC=4, C

Figure 45. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 1 of

2)

126 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note: For reference purposes, the language definition shown in Figure 45 contains

comments with step numbers placed in the middle of commands; for this

language definition to run, these comments must be removed.

* STEP 22

 PORDER=3, C

* STEP 9 (* PARMS *)

 OPTIONS=(NOTRUNC,NODYNAM,LIB,SIZE=256K,BUF=32K,APOST, C

 DMAP,XREF)* DDNAME ALLOCATIONS

* STEP 16

* 1 (* SYSLIN *)

 FLMALLOC IOTYPE=O,KEYREF=OBJ,RECFM=FB,LRECL=80, C

 RECNUM=5000,DFLTTYP=OBJ

* STEP 22

* 2 (* N/A *)

 FLMALLOC IOTYPE=N

* STEP 22

* 3 (* N/A *)

 FLMALLOC IOTYPE=N

* STEP 12; STEP 13

* 4 (* SYSLIB *)

 FLMALLOC IOTYPE=I,KEYREF=SINC

* STEP 15

* 5 (* SYSIN *)

 FLMALLOC IOTYPE=U,KEYREF=SINC,DDNAME=SYSPUNCH

* STEP 14

* 6 (* SYSPRINT *)

 FLMALLOC IOTYPE=O,KEYREF=LIST,RECFM=FBA,LRECL=133, C

 RECNUM=25000,PRINT=Y,DFLTTYP=LIST

* STEP 22

* 7 (* SYSPUNCH *)

 FLMALLOC IOTYPE=N

* STEP 17

* 8 (* SYSUT1 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* STEP 18

* 9 (* SYSUT2 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* STEP 19

* 10 (* SYSUT3 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* STEP 20

* 11 (* SYSUT4 *)

 FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

* STEP 22

* 12 (* SYSTERM *)

 FLMALLOC IOTYPE=N

* STEP 21

* 13 (* SYSUT5 *)

 FLMALLOC IOTYPE=A

 FLMCPYLB NULLFILE

* STEP 22

* 14 (* SYSUT6 *)

 FLMALLOC IOTYPE=N

* 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 45. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 2 of

2)

Chapter 5. Language Definition Considerations 127

128 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 6. Using SCLM and Tivoli Information Management

for z/OS

Tivoli Information Management sample code is shipped as member FLM00CVE in

SAMPLIB. It illustrates communication between SCLM and Tivoli Information

Management. The sample is implemented in the REXX language and uses the

Information Management REXX high-level API. The sample verifies a

programmer’s authority to update an SCLM-controlled module based on the SCLM

change code provided by the programmer.

FLM00CVE retrieves the Information Management problem record identified by

the change code, and verifies:

1. The record exists.

2. The Problem Status field is set to OPEN.

3. The Assignee Name field is the same as the userid parameter passed by SCLM.

Required Environment

v Tivoli Information Management for z/OS Version 1.2 or later must be installed

on the target MVS system.

v The Information Management REXX HLAPI (BLGYRXM) must be installed on

the system.

v A valid Information Management session name, class name, and default

REXX/HLAPI Record-Retrieve PIDT table must exist. The sample uses session

BLGSES00, class MASTER, and table BLGYPRR.

v For software verification purposes, at least one problem record meeting the

desired criteria should exist in the Information Management database.

Description of User Program Interaction

The FLM00CVE REXX Exec can be invoked as a regular MVS Exec, but it is

designed to be invoked as an SCLM change code verification user exit. If

FLM00CVE is invoked as a user exit, the Information Management-specific

arguments are passed by the SCLM option list defined in the FLMCNTRL macro.

The SCLM-specific arguments are appended to the Information Management

arguments.

Input Parameters

Two different sets of parameters are passed to the sample as one parameter string.

User options are specified in the Options entry of the FLMCNTRL macro. SCLM

parameters are the standard set of parameters passed to the SCLM Exit.

Option List Format

The option list format is as follows:

 pica_tabn,

 pica_clsn,

 pica_sess,

 pica_clsc,

 pica_dbid,

 pica_msgd,

© Copyright IBM Corp. 1990, 2005 129

pica_spli,

 pica_stxt,

 pica_tint,

 pica_usrn,

 group,

 type,

 member,

 language,

 userid,

 auth code,

 change code

Information Management Parameters

The required Information Management parameters are:

pica_tabn Specifies the name of the Information Management Record

Retrieval table. The table defines the fields within a problem

record. The default is BLGYPRR (shipped with Information

Management). This must be the name of the table used in your

installation.

pica_clsn Specifies the Information Management Privilege Class record that

contains the registered user name authorized to retrieve a problem

record. The default is MASTER. This must match your installation.

The registered authorized user name (see pica_usrn) is optionally

specified in option 10.

pica_sess Specifies the name of the Information Management Session

Member (BLGSESxx) load module. the default is BLGSES00. This

parameter must match your installation.

The optional Information Management parameters are:

pica_clsc Specifies the count of privilege class records that can be maintained

in storage during the Information Management session. The default

is one. The sample program uses only one privilege class record.

pica_dbid Specifies the Problem Record database number. The default is 5,

the standard Information Management database.

pica_msgd Specifies the destination for Information Management API log

messages. Messages can be either printed to an APIPRINT data set,

returned on the message chain, or both. The default is C, return

messages on the API message chain. The sample program

interprets chained message return code and reason code values to

provide English text messages. See “Error Processing” on page 131

for more information.

pica_spli Specifies the number of minutes that the activity log can print

transaction results before the API closes and reopens the log. The

default is ten minutes if message chaining (pica_msgd) is not

selected, otherwise, it is zero.

pica_stxt Specifies whether text data is to be retrieved from the problem

record. Setting this value to NO suppresses text retrieval. The

default is NO because the sample program does not process text

fields in the problem record.

pica_tint Specifies the transaction processing timeout interval. This field

specifies the time in seconds that any Information Management

API transaction can process before the API notifies the application

of a timeout event. The default is 300 seconds.

130 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

pica_usrn Specifies a name registered in the selected Privilege Class (see

pica_clsn) that is authorized to retrieve problem records. The

default is the TSO User ID of the SCLM user.

SCLM Parameters

The SCLM parameters are:

group Specifies the MVS data set Group name.

type Specifies the MVS data set Type name.

member Specifies the MVS partitioned data set Member name if selected,

otherwise blank.

language Specifies the language of the module selected. This is blank for

Edit exits.

userid Specifies the TSO User ID accessing SCLM. In the sample program,

this value is compared to the Information Management Problem

Record Assignee Name field (Information Management S-word:

S0B5A) for authorization to modify the SCLM module.

auth_code Specifies the authorization code of the member being edited.

change code Specifies the Change Code entered by the SCLM user on the

appropriate panel. This value is used by the sample program to

specify the Information Management Problem Record Record_ID

(RNID) to be retrieved. In the sample program, the Problem Record

Current Status field (Information Management S-word: S0BEE)

from the retrieved record is verified against the constant OPEN for

authorization to modify the SCLM module.

Program Flow

When the FLM00CVE program is invoked, the program flow is as follows:

1. Parse the argument string passed by invocation.

2. Perform the REXX/HLAPI Initialization function (HL01).

3. Perform the REXX/HLAPI Record Retrieve function (HL06).

4. Perform the REXX/HLAPI Termination function (HL02).

5. Verify that the user requesting to change the member has authority to do so

based on information contained in the retrieved record.

6. Output error messages if applicable.

7. Return to caller passing return code as exit value.

Each of the steps above performs error-checking and return code analysis

independently. If an error is noted, processing might terminate at that time or

continue to another step. For example, after Information Management initialization

has completed, Information Management Termination is attempted regardless of

intervening errors; the transaction is not left hanging.

Error Processing

When an error condition is encountered, the program issues an error message, if

possible, and terminates processing with the appropriate return code. When a

warning condition is encountered, the program issues a warning message and

continues processing. When a warning or error is the result of an Information

Chapter 6. Using SCLM and Tivoli Information Management for z/OS 131

Management REXX/HLAPI call, a message appropriate to the reason code is

displayed. If an Information Management message chain is available, the

associated messages are also displayed.

The program initiates REXX/HLAPI with logging enabled. Error conditions are

both printed to the session log and returned to the program in message chains, as

appropriate.

For warning message instigated by the Information Management API interface, the

program returns a return code of zero because SCLM considers any nonzero return

code as an indication of failure. For API errors with return code 8 or higher, the

program issues the appropriate messages and return code 8.

The program specifically tests for and reports the following input parameter errors:

v No input parameters.

v Missing or invalid REXX/HLAPI table name.

v Missing or invalid Information Management Class name.

v Missing or invalid Information Management Session ID.

v Missing or invalid User ID.

v Missing or invalid Change Code.

v Problem Record not found in the database.

v Problem Record Problem Status not ″OPEN″.

v Problem Record Assignee Name does not match User ID.

v Input parameters specified as ″Ignored″ are checked for presence and valid

format, and a warning message is issued if warranted. However, the return code

presented is zero.

Example

This example calls the FLM00CVE Exec through the SCLM verify change code exit.

 IN FLMCNTRL MACRO:

 CCVFY=FLM00CVE,

 CCVFYDS=PROJ1.SAMPLIB.EXEC,

 CCVFYCM=TSOLNK,

 CCVFYOP=(BLGYPRR,MASTER,BLGSES00,1,5,C,300,NO,360,FLM00CVE,)

Where:

CCVFY=FLM00CVE

Specifies that the SCLM Verify Change Code exit be used and that member

FLM00CVE be invoked.

CCVFYDS=PROJ1.SAMPLIB.EXEC

Specifies the MVS data set containing member FLM00CVE. In the example:

″PROJ1.SAMPLIB.EXEC(FLM00CVE)″

CCVFYCM=TSOLNK

Specifies that FLM00CVE is invoked using the TSO service facility routine,

the default for REXX Exec programs.

CCVFYOP=(exit routine parameters)

Specifies the parameters that are passed to the exit program.

132 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 7. Understanding and Using the Customizable

Parsers

Parsers are provided as source code (in REXX) for those customers who need to

extend or modify the behavior of the parsers supplied by IBM. This section

explains the logic of the parsers as shipped and provides examples of how to

modify the parsers to suit your own needs and standards.

The customizable parsers supplied by IBM are:

FLMLRASM Assembler H parser

FLMLRCBL COBOL II parser

FLMLRCIS C/C++ for MVS parser

FLMLRC2 C++ for Windows parser

FLMLRC37 C/370 parser

FLMLRDTL DTL parser

FLMLRIPF OS/2 IPF parser

 These parsers can be found in the ISPF sample library, ISP.SISPSAMP.

The Parsers as Shipped

The IBM-supplied parsers are delivered as REXX source. If you do not require any

changes to the functions provided, the source modules can be used. The parsers

may also be compiled, pre-linked, and link-edited (using the IBM Compiler and

Library for REXX/370 and the Linkage Editor) for optimum performance.

Use the CALLMETH=TSOLNK parameter on the FLMTRNSL macro to directly invoke

SCLM translators written in REXX.

Sample Language Definitions

The sample language definitions are provided to demonstrate how to invoke the

customizable parsers:

FLM@RASM Assembler H sample language definition

FLM@RCBL COBOL II sample language definition

FLM@RCIS C/370 sample language definition

FLM@RC37 C/370 sample language definition

FLM@DTLC DTL sample language definition

FLM@WBCC C++ for Windows sample language definition

FLM@WIPF OS/2 Help sample language definition

In addition, a sample REXX language definition, FLM@REXC, is provided to

compile, pre-link, and link-edit REXX source code.

© Copyright IBM Corp. 1990, 2005 133

Parser Error Listings

For parsing errors with return codes of 4, 8, or 10, the parsers write error messages

to a data set called userid.SCLMERR.LISTING. An error message consists of two or

three lines. The first line is the error code: 4, 8, or 10. The second line and the third

line (if it exists) contain one of the following:

v One or more non-valid input parameters

v A dependency name that is greater than 8 characters in length

v A dependency name that cannot be stored in the dependency buffer because it is

full

v A line of source containing an error

v A single quote or double quote that is mismatched and its line number

For additional information, refer to the z/OS ISPF Software Configuration and Library

Manager Reference.

Modifying the Parsers

This section describes the general design of the customizable parsers and provides

several examples of updating the parsers.

The parsers read each line of the source code and process tokens on each line.

Tokens are discrete elements on a line of source code; they are

language-dependent. For example, consider the following COBOL statement:

 MOVE ’SMITH’ TO NAME.

Seven tokens appear in this example: MOVE, the two single quotation marks, SMITH,

TO, NAME, and the period.

State variables are used to hold the current conditions and expectations created by

the processing of prior tokens in order to process the current token. For example, if

a single quote is found, the single quote state variable (state.single) is turned on.

All tokens, regardless of multiple lines, are ignored until the matching single quote

is found, or until the end of file is reached. In the COBOL and Assembler parsers,

dependency names may be enclosed in quotes; all data after the dependency name

is ignored until the matching quote is found. Dependency keywords (COPY or EXEC

SQL INCLUDE) inside quotes are ignored. For example, consider the following

COBOL statement:

 MOVE ’COPY B’ TO ACTION.

B will not be placed into the dependency buffer because COPY will not be processed

as a dependency keyword.

Because of these state variables, dependencies, comments (in C/370), quotes, and

so on can span lines. Concatenation of keywords and dependency names

(particularly in COBOL) is not supported by the parsers. If dependency names are

split between lines, the partial dependency name will not be added by the REXX

parser.

Adding More Elaborate Parsing Error Messages

This section provides an example of modifying a customizable parser to add more

complete error messages to the userid.SCLMERR.LISTING data set. This support

can be added to all of the customizable parsers. The COBOL parser, FLMLRCBL,

will be used in this example.

134 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The error_listing routine is used to place the error_string1 and error_string2

strings into the error messages data set. error_string1 and error_string2 are set

before invoking error_listing. The following list identifies, in order, the routine, the

expanded English error message, and the error string to be changed in

FLMLRCBL.

Routine Change Required

initialization Change:

error_string1 = miss_parm1 ’ ’ ||,

 miss_parm2 ’ ’ ||,

 miss_parm3

to

error_string1 = ’MISSING PARAMETER(S): ’ ||,

 miss_parm1 ’ ’ ||,

 miss_parm2 ’ ’ ||,

 miss_parm3

initialization Change:

error_string1 = ’LISTSIZE=’,

 ||sclm_dep_array_size

error_string2 = ’ LISTSIZE < ’,

 DEP_ELEM_SIZE

to

error_string1 = ’LISTSIZE PARAMETER MUST BE AT LEAST’,

 DEP_ELEM_SIZE

error_string2 = ’

initialization Change:

error_string1 = ’LISTSIZE=’,

 ||sclm_dep_array_size

to

error_string1 = ’LISTSIZE PARAMETER MUST BE A ’||,

 ’POSITIVE WHOLE NUMBER’

initialization Change:

error_string1 = ’LISTINFO=’,

 ||sclm_dep_addr

to

error_string1 = ’LISTINFO PARAMETER MUST BE A ’||,

 ’POSITIVE WHOLE NUMBER’

initialization Change:

error_string1 = ’STATINFO=’,

 ||sclm_stats_addr

to

error_string1 = ’STATINFO PARAMETER MUST BE A ’||,

 ’POSITIVE WHOLE NUMBER’

process_line Change:

error_string1 = token

to

Chapter 7. Understanding and Using the Customizable Parsers 135

error_string1 = ’DEPENDENCY ’token’ EXCEEDS 8 ’||,

 ’CHARACTERS ON LINE ’||,

 stats.total_lines

add_dep Change:

error_string1 = name

to

error_string1 = ’DEPENDENCY ARRAY CAPACITY EXCEEDED ’||,

 ’WITH DEPENDENCY ’name

termination Change:

error_string1 = SINGLE_QUOTE state.single_line

to

error_string1 = ’MISMATCHED SINGLE QUOTE ON ’ state.single_line

termination Change:

error_string1 = DOUBLE_QUOTE state.double_line

to

error_string1 = ’MISMATCHED DOUBLE QUOTE ON ’ state.double_line

termination Change:

error_string1 = END_KEYWORD

to

error_string1 = ’DEPENDENCY ARRAY CAPACITY EXCEEDED,’

error_string2 = ’NOT ENOUGH SPACE TO WRITE END-OF-LIST KEYWORD’

Appending to the Error Listing File

If parser errors are found, error messages are written to the

userid.SCLMERR.LISTING data set. This data set is created (re-written) each time

an error is found, each time one of the REXX parsers is invoked. The

allocate_error_listing routine is used to allocate this data set. The overwriting of

this data set is suitable for creating or modifying members with Edit. However,

during multiple migrations of members, this data set will be overwritten each time

a parser error occurs per parser invocation.

To keep all parser errors for all members, modify the allocate_error_listing routine

to append to the userid.SCLMERR.LISTING data set, instead of overwriting it.

Change

IF SYSDSN(ERRFILE) = ’OK’ THEN

 disp = ’OLD’

ELSE

to

IF SYSDSN(ERRFILE) = ’OK’ THEN

 disp = ’MOD’

ELSE

With this change, all invocations of the parser will append any error messages to

the error file without overwriting the previous contents.

136 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Compiling the Parsers

To increase parser performance, any parsers written in REXX can be compiled and

pre-linked using the IBM Compiler and Library for REXX/370. Using the

FLM@REXC language definition, SCLM can be used to compile, pre-link, and

link-edit the parsers. To compile a parser using FLM@REXC:

1. Add FLM@REXC to your SCLM project definition.

2. Make any required changes to FLM@REXC, such as changing specified data set

names.

3. Re-assemble and re-link the project definition.

4. Migrate the parsers into SCLM using the REXXCOM language.

5. Build each of the parsers.

6. If necessary, copy the load modules (FLMLRASM, FLMLRCBL, FLMLRC37,

FLMLRCIS, FLMLRC2, FLMLRDTL, and/or FLMLRIPF) to common data sets.

7. Change the language definitions to use the load modules instead of the

interpreted versions.

Remember to change the CALLMETH parameter on the FLMTRNSL macro.

8. Re-assemble and re-link the project definition.

Chapter 7. Understanding and Using the Customizable Parsers 137

138 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 2. Developer’s Guide

Chapter 8. The Software Configuration and

Library Manager 141

SCLM Project Environment 141

User Application Data 141

SCLM Hierarchies 142

Key/Non-Key Groups 143

Moving Data through the Hierarchy 144

Chapter 9. Using SCLM Functions 145

Name Retrieval with the NRETRIEV command . . 145

SCLM Considerations for NRETRIEV 146

SCLM Restrictions 146

Stack Management for SCLM 147

SCLM Main Menu 147

SCLM Main Menu Options 148

SCLM Main Menu Action Bar Choices: 148

SCLM Main Menu Panel Fields: 149

View (Option 1) 149

SCLM View - Entry Panel Action Bar Choices 150

Reflist 150

Refmode 150

SCLM 150

SCLM View - Entry Panel Fields 151

Edit (Option 2) 152

SCLM Edit - Entry Panel Fields 153

Comparison of SCLM and ISPF Editors 154

SCLM Command Macros 155

EDIT Command 155

Save Command 155

SCREATE Command 156

SMOVE Command 156

SPROF Command 157

SCLM Edit Profile Panel Fields 157

SREPLACE Command 158

Overriding SCLM Command Macros . . . 159

Utilities (Option 3) 159

Library Utility 160

Library Utility Commands 162

Member Selection List 163

Accounting Record 166

Statistics 168

Build Map Record 172

Build Map Contents 174

Authorization Code Update 175

Migration Utility 176

Database Contents Utility 178

Specifying Selection Criteria 180

Accounting Information Fields 181

Hierarchy search information 182

Tailored Output 184

Tailored Output Examples 185

Architecture Report Utility 188

Architecture Report Example 190

Export Utility 195

Export Report Example 197

Import Utility 199

Import Report Example 201

Audit and Version Utility 203

SCLM Version Selection 205

SCLM Audit and Version Record 209

SCLM Version Compare 210

External Compare 212

Retrieve 213

Delete from Group Utility 214

Delete from Group Report Example 216

Package Backout Utility 218

Backup phase 220

Restore phase 221

Package Functions 222

Package Member Details 224

Unit of Work Utility 225

Unit of Work Options 227

SCLM Unit of Work Data Set Specification

panel 228

Define Unit of Work list commands 229

Define Work Element List commands . . . 231

UOW Member List panel 231

Work Element List panel 233

SCLM Explorer 234

FLMUEXTR—the SCLM Explorer batch

utility 235

Build (Option 4) 236

Build Report Example 240

Promote (Option 5) 242

Promote Report 245

Processing Errors 248

Data Set Overflow 248

Data Contention 248

Command (Option 6) 249

Easy Cmds (Option 6A) 249

Batch Processing 249

Output Disposition 250

Sample Project Utility (Option 7) 251

Chapter 10. Development Scenario 253

Understanding the Hierarchy and the SCLM Main

Menu 253

Understanding the Architecture Definition 254

Sample SCLM Development Cycle 256

Using the SCLM Editor 258

Understanding the Library Utility 259

Using Build 260

Editing the Member to Correct Errors 261

Attempting to Promote a Member before

Performing a Build 261

Rebuilding the Changed Member 261

Using the Database Contents Utility 262

Promoting a Member Successfully 263

Drawing Down a Promoted Member 264

Performing Project Housekeeping Activities . . . 264

Chapter 11. Architecture Definition 265

© Copyright IBM Corp. 1990, 2005 139

 | |
 | |

Architecture Members 265

Kinds of Architecture Members 265

Defining Compiler Processed Components . . . 266

Compilation Control Architecture Members . . 266

Specifying Source Members 267

Defining Link-Edit Processed Components . . . 267

SCLM Build and Control Timestamps 268

Defining Application and Subapplication

Components 269

Generic Architecture Members 269

Build and Promote by Change Code 270

Architecture Statements 272

Statement Format 272

Statement Uses 273

Sample Application Using Architecture Definitions 279

Ensuring Synchronization with Architecture

Definitions 282

Build Outputs 284

Multiple Build Outputs 284

Sequential Build Outputs 284

Default Output Member Names 284

Languages of Output Members 285

Chapter 12. Managing Complex Projects . . . 287

Impact Assessment Techniques 287

Dependency Processing 287

Propagating Applications to Other Databases . . . 288

140 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 8. The Software Configuration and Library Manager

The Software Configuration and Library Manager (SCLM) component of ISPF

contains the capabilities of both a Library Manager and a Configuration Manager

program.

Library Manager programs control source code, keeping developers from

accidentally overwriting each other’s code changes and providing a mechanism for

moving the source code from one set of development libraries to the next. Also,

SCLM can keep back-level versions of source files, with an audit trail of changes

and other basic library management functions that you can use in your code

development and maintenance processes.

Configuration Manager programs track how all the pieces of an application fit

together. Not just the source code, but the object and load modules as well. SCLM

adds additional capabilities, such as how test cases and documentation are

associated with a source code module. SCLM uses this information to control

compiling, linking, and promoting an application. SCLM ″builds″ are optimized

such that only pieces that need to be regenerated when a change is made are built.

SCLM Project Environment

The SCLM project environment is made up of data sets used by SCLM to store and

control the user application software for an individual project. The project

environment contains three types of data associated with an individual project:

v User Application Data

v SCLM Control Data (see “Step 6: Allocate and Create the Control Data Sets” on

page 18)

v Project Definition Data (see Chapter 1, “Defining the Project Environment,” on

page 3)

User Application Data

User application data consists of the application data (programs) being developed

for a single project. SCLM stores all user data associated with a single project as

members within a hierarchical set of MVS partitioned data sets (ISPF libraries).

These data sets are called the project partitioned data sets. Users refer to

SCLM-controlled ISPF libraries with an SCLM naming convention containing three

levels of qualification, specifically:

project_name.group_name.type_name

The first qualifier, project_name, is the unique project identifier associated with the

hierarchy.

SCLM organizes project data sets into groups, the second identifier within the

naming convention. Each group represents a different stage or state of the user

data within the life cycle of a project. For example, assume a project has three

groups named DEV1, TEST, and RELEASE. The DEV1 group represents data being

modified. The TEST group represents data being tested. The RELEASE group

represents data released for customer use. The groups of a project are organized

into hierarchical order to form a tree-like hierarchy.

© Copyright IBM Corp. 1990, 2005 141

A group is made up of several data sets that can contain different types of data.

Types, the third qualifier of the naming convention, are used to differentiate the

kinds of data maintained in the groups of a project. For example, source code

would be stored in one type and listings in another type. It is better not to mix

different data types in SCLM. (Although SCLM allows you to do this, it is not

recommended; data with different formats should be stored in different types.)

Thus a user working on an application for project PROJ1 might be assigned to the

DEV1 group. The project can be using four different types of data. Therefore the

user might have the following project partitioned data sets to work in:

PROJ1.DEV1.SOURCE - all source modules

PROJ1.DEV1.OBJECT - all compiler object files

PROJ1.DEV1.LISTING - all compiler listings

PROJ1.DEV1.LOAD - all executables (link-edit output)

Note: SCLM can use data sets with names consisting of three levels of

qualification as is the practice in many ISPF environments. It can also use

data sets with two or more levels of qualification. This is an option that the

project manager must enable for a project to use. If this option is used,

SCLM developers would still use the project_name.group_name.type_name

naming convention when performing SCLM functions. See Part 1 of this

document for more information about this option.

SCLM Hierarchies

The groups within a project are organized in a hierarchical order with each group

being subordinate to the group above it. A sample hierarchy is shown in Figure 46.

 The topmost group is not subordinate to any group and is known as the top

group, root group, or the root of the hierarchy. There is only one top group in each

hierarchy. The bottom groups in a hierarchy are called development groups. The

names for the development groups in Figure 46 are DEV1 and DEV2. All

modifications and additions to user-created data must occur in the development

groups of the hierarchy. Groups of equivalent rank within the hierarchy are

considered to be within the same layer of the hierarchy. Most hierarchies have

multiple layers.

Changes can be promoted to the next group, TEST, in the example hierarchy.

Promote means to copy or move a member or a set of members from one group to

the next group in the hierarchy. Each group can only promote members to the

group to which it is subordinate. This link between groups is known as the promote

path. or example in Figure 46 the three promote paths are DEV1 to TEST, DEV2 to

TEST, and TEST to RELEASE. Any number of groups can promote into the same

group.

Figure 46. Sample Project Hierarchy

142 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Hierarchies are always searched from bottom to top along a path called the

hierarchical view. The hierarchical view can begin at any group in the hierarchy and

follows the promote paths to the topmost group in the hierarchy. Therefore in

Figure 46 on page 142, two examples of hierarchical views are DEV1 to TEST to

RELEASE and TEST to RELEASE. Thus, when referencing data in the hierarchy,

members at lower groups take precedence over members at higher groups. All

data existing in groups TEST and RELEASE is accessible from development

libraries in groups DEV1 or DEV2. When a change is made to a member in the

DEV1 group, this change is not available to the DEV2 group until the changed

member has been promoted to the TEST group.

Therefore, within a hierarchy, the user data located at the lower layers of the

hierarchy is in a more volatile state than the data at the upper layers. The upper

layers of the hierarchy usually contain versions of products ready or nearly ready

for release to customers, while the lower layers contain versions of products

currently under development.

Key/Non-Key Groups

You can further identify groups in the project hierarchy as key groups and non-key

groups. Key groups are defined as the groups within a hierarchy that contain all

the software components of the application under development. A key group is a

group into which you move data during a promotion. A project can have as many

key groups as you want as long as any hierarchical view has no more than 123

groups. The actual limiting factor is the MVS limit of 123 extents for a

concatenated partitioned data set.

SCLM allows a project to specify transition groups between key groups. These

groups are known as non-key groups. A non-key group is a group into which you

copy (rather than move) data during a promotion. When you promote data in a

hierarchy, SCLM does not purge data from a key group until it reaches the next

key group. Therefore, in a project with non-key groups, SCLM temporarily

duplicates data in the non-key groups and the next lower key group. Figure 47

illustrates the relationship between a key and a non-key group within a project

hierarchy.

 As the figure shows, two non-key groups (the STAGE layer) appear between the

development groups (the DEV layer) and the test and integration group (the TEST

layer.) Developers use the STAGE groups as an interim place into which they

promote their work before it moves to the next layer.

Figure 47. Key and Non-Key Groups Within the Project Hierarchy

Chapter 8. The Software Configuration and Library Manager 143

Using non-key groups enables you to display the critical elements of the

hierarchical structure on ISPF panels. Because ISPF panels allow you to display

only four key groups at one time, it is difficult to display the highest group in the

hierarchy when you have a complex project that contains many layers.

Select key groups and non-key groups with the following set of guidelines:

v The lowest (development) groups must be key.

v Any group with more than one lower group promoting into it should be key.

Moving Data through the Hierarchy

Data moves within an SCLM hierarchy in two directions, up or down. When

SCLM promotes members up the hierarchy from one group to the next group, the

following rules apply:

v Copy members from key groups to non-key groups

v Move members from non-key groups to non-key groups

v Move members from key groups to key groups

v Move members from non-key groups to key groups and purge from the

previous key group.

v Do not promote data from a primary non-key group.

In general, when SCLM accesses a hierarchy from a particular group, it

concatenates only the necessary groups. If the lowest group in the hierarchy to be

accessed is non-key, SCLM concatenates it with all the non-key groups above it, up

to the next key group. From there, SCLM concatenates only the key groups. If the

starting group in the hierarchy to be accessed is key, SCLM concatenates only it

and the key groups above it.

The one exception to this concatenation involves non-key groups that have more

than one group promoting into them. Non-key groups of this kind are as

significant as key groups, and SCLM must also concatenate them in a hierarchy.

Groups that must be concatenated when a hierarchy is to be accessed are known as

primary groups. Thus, all key groups and all non-key groups with more than one

group promoting into them are primary groups.

After members are promoted from the development groups to the higher groups in

the hierarchy, users can bring members back to the development groups by

performing a draw down. A draw down copies the member at the higher group to

the specified development group. For a member to be drawn down it must be

within the hierarchical view of the development group. Members can only be drawn

down to development groups. SCLM performs an automatic draw down when the

member is edited.

144 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 9. Using SCLM Functions

With SCLM functions, you can view, create, update, delete, compile, link, promote,

and report on data stored in the database of a project. In addition, you can

generate reports with the build, promote, and utilities functions.

This chapter describes the panels and options you use to access SCLM functions

and to generate reports. It also compares SCLM to ISPF and notes the differences

in the EDIT environment under both utilities.

You can access all interactive SCLM functions through a set of panels by selecting

the SCLM option from the ISPF Primary Option Menu. In addition to the SCLM

panel interface, you can call a subset of SCLM functions independently with a

command line processor or a program service interface. Refer to the z/OS ISPF

Software Configuration and Library Manager Reference for more information.

Notes:

1. If SCLM does not appear on any of your menu panels or on the Menu

pull-down, enter TSO SCLM on any ISPF command line. If SCLM is available

to your terminal session, the SCLM Main Menu is displayed.

2. A virtual region size of 4096K is recommended when you use the SCLM dialog.

Increase the virtual region size if you encounter abends related to insufficient

memory.

3. SCLM maintains allocations of data sets in the hierarchy between uses of SCLM

functions. This enhances the performance of SCLM; however, if data sets in the

hierarchy are created, deleted, cataloged or uncataloged while SCLM is active,

you should exit SCLM and reopen the SCLM Main Menu.

Name Retrieval with the NRETRIEV command

The ISPF command table contains an entry named NRETRIEV. On enabled panels

(such as edit and browse), NRETRIEV retrieves the library names from the current

library referral list, or data set or workstation file names from the current data set

referral list. The user is responsible for assigning the NRETRIEV command to a PF

key.

When the cursor is not in the Other Data Set Name field, the Volume Serial field,

or the Workstation File Name field, and the NRETRIEV key is pressed, the ISPF

library fields are filled in from the current list. As long as the cursor is not placed

in these fields, subsequent presses of the NRETRIEV key will retrieve the next

library concatenation from the list.

When the cursor is in the Other Data Set Name field, the Volume Serial field, or

the Workstation File Name field, and the NRETRIEV key is pressed, the data set

name or workstation name is filled in from the current data set list. ISPF attempts

to determine if the name in the list is a workstation or data set name. As long as

the cursor is placed in these fields, subsequent presses of the NRETRIEV key will

retrieve the next data set or workstation name from the list.

Use the personal list settings panel to force the NRETRIEV command to verify the

existence of a data set before retrieving it. If verification is active, then a check is

made to see if a data set name exists before a retrieval attempt. If a volume name

© Copyright IBM Corp. 1990, 2005 145

is not in the personal list entry, then the catalog is checked to see if the data set

name is cataloged. If a volume name exists, an OBTAIN macro is used to check the

volume for the data set. Verification does not check ISPF library names or

workstation names, and does not check for the existence of PDS(E) members. In

the data set list Dsname Level field, verification is inactive and workstation names

are never retrieved.

NRETRIEV is enabled on the following options:

v View, including extended move, copy, create, and replace panels

v Edit, including extended move, copy, create, and replace panels

v Library Utility (Option 3.1)

v Data Set Utility (Option 3.2)

v Move/Copy Utility (Option 3.3)

v Data Set List (Option 3.4)

v Reset ISPF Statistics (Option 3.5)

v Hardcopy Utility (Option 3.6)

v Workstation Transfer (Option 3.7.2)

v SuperC (Options 3.12, old and new, and Option 3.14)

v SCLM Options:

– View (Option 1)

– Edit (Option 2)

– Member list (Option 3.1)

– Migration (Option 3.3)

– Build (Option 4)

– Promote (Option 5)

SCLM Considerations for NRETRIEV

The NRETRIEV command is enabled to work in several of the SCLM options.

There are certain restrictions and considerations to keep in mind when you choose

to use NRETRIEV in SCLM.

SCLM Restrictions

v The NRETRIEV key within SCLM does not use the standard reference list or

personal lists. Instead, it uses a stack that is stored internally. The stack is not

editable. The stack is saved from session to session as a single-line table called

ISRSLIST.

Note: In the SCLM View option, the Other Data Set Name field does use the

standard reference list because the Other Data Set Name field has no

particular meaning to SCLM.

v In SCLM, there is no validation of saved or retrieved names. That means that if

you type in a library name and press Enter, it is added to the list of saved

names, even if SCLM does not process it. This contrasts with the standard

reference list processing, which does not add a data set or library name until the

data set or library is successfully allocated.

v On name retrieval (when the NRETRIEV key is pressed) there is no validation of

the existence of data sets or libraries.

v The regular NRETRIEV command is screen independent (it uses a separate list

indicator for each screen in split screen mode). There is only 1 position locator

for SCLM lists. This means that split screens with SCLM NRETRIEV will use the

146 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

same pointer into the list. An NRETRIEV on screen 1 followed by an NRETRIEV

on screen 2 will get list entries 1 and 2 respectively.

Stack Management for SCLM

A library name (or concatenation) is added to the list of saved library names by

pressing Enter on a panel that supports saving names. If the library or

concatenation exists in the list already, it is moved to the top of the list. Where the

Project field or the first Group field is an output field (SCLM options 2, 3, 4, and

5), the output fields are not used in the comparison between what was typed on

the panel and what is already in the list. This enables you to work in different but

similar projects.

In other words, on the edit screen that has both the Project and Group1 as output

fields, the concatenation:

SCLM Library:

 Project...: PDFTDEV

 Group: DGN STG INT SVT

 Type: ARCHDEF

 Member ...:

would match

SCLM Library:

 Project...: PDFTOS25

 Group: JSM STG INT SVT

 Type: ARCHDEF

 Member ...:

Similarly, where groups 2, 3, and 4 are not used, those groups are not used when

checking to see if the name already exists.

If a match is found, the existing entry in the list is moved to the top of the list.

SCLM Main Menu

Figure 48 on page 148 shows the primary options on the SCLM Main Menu.

Chapter 9. Using SCLM Functions 147

SCLM Main Menu Options

When you select one of these options and press Enter, another panel appears that

is determined by the option you selected.

 View See “View (Option 1)” on page 149.

Edit See “Edit (Option 2)” on page 152.

Utilities See “Utilities (Option 3)” on page 159.

Build See “Build (Option 4)” on page 236.

Promote See “Promote (Option 5)” on page 242.

Command Enter and execute a TSO, CLIST, REXX exec, or SCLM command

from within SCLM.

Easy Cmds Select an FLMCMD service to display a panel containing data entry

fields for the parameters associated with that service. For details

about the specific service panels, see the description of the relevant

service in the z/OS ISPF Software Configuration and Library Manager

Reference.

Sample See “Sample Project Utility (Option 7)” on page 251.

Exit Exit from SCLM.

SCLM Main Menu Action Bar Choices:

 Menu See “Menu Action Bar Choice” on page xvii.

Utilities See “Utilities Action Bar Choice” on page xviii.

Help Help for general and specific topics.

 Menu Utilities Help

 ──

 SCLM Main Menu

 Enter one of the following options:

 1 View ISPF View or Browse data

 2 Edit Create or change source data in SCLM databases

 3 Utilities Perform SCLM database utility/reporting functions

 4 Build Construct SCLM-controlled components

 5 Promote Move components into SCLM hierarchy

 6 Command Enter TSO or SCLM commands

 6A Easy Cmds Easy SCLM commands via prompts

 7 Sample Create or delete sample SCLM project

 X Exit Terminate SCLM

 SCLM Project Control Information:

 Project PDFTDEV (Project high-level qualifier)

 Alternate . . . (Project definition: defaults to project)

 Group MBURNS (Defaults to TSO prefix)

 Option ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 48. SCLM Main Menu Panel (FLMDMN)

SCLM Main Menu

148 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

SCLM Main Menu Panel Fields:

 Project A project’s unique identifier. This field is required to access any

SCLM function.

Alternate The name of an alternate project definition to use. If this field is left

blank, it defaults to the value specified in the Project field.

Group This group defines the bottom of the hierarchical view used by the

selected function, and can be any group in the hierarchy. This field

defaults to your TSO PREFIX or to your user ID if no TSO PREFIX

has been created. This field must be a development group if Edit (2)

is chosen.

View (Option 1)

The SCLM View function uses the ISPF View service with an SCLM shell around

it. The View function allows you to display data in a project hierarchy or data that

is not controlled by SCLM. The SCLM View interface analyzes the hierarchy

structure for the project you specify and automatically provides the appropriate

concatenation sequence for the groups. It presents the four lowest key groups

identified in the project definition, starting from the Group specified on the Main

Menu.

SCLM View is functionally equivalent to ISPF View. (Refer to z/OS ISPF User’s

Guide Vol II for more information.) For example, you can specify a member name

unless you want to see a member selection list. Additionally, you can modify the

displayed library (or “group”) concatenation sequence. You can also view a

partitioned data set (PDS), a partitioned data set extended (PDSE), or a sequential

data set. Figure 49 shows the panel SCLM displays when you select option 1, View,

from the SCLM Main Menu.

Note: The NRETRIEV command key is enabled to work with this option. See

“Name Retrieval with the NRETRIEV command” on page 145 for more

information.

 Menu RefList RefMode SCLM Utilities Workstation Help

 ──

 SCLM View - Entry Panel

 SCLM Library:

 Project . . . PDFTDEV

 Group MBURNS . . . STG . . . INT . . . SVT

 Type SOURCE

 Member . . . (Blank or pattern for member selection list)

 Other Partitioned, Sequential or VSAM Data Set:

 Data Set Name . .

 Volume Serial . . (If not cataloged)

 Initial Macro Options

 Profile Name Confirm Cancel/Move/Replace

 Format Name Browse Mode

 View on Workstation

 / Warn on First Data Change

 Mixed Mode

 Data Set Password . . (If password protected)

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 49. SCLM View - Entry Panel (FLMEB#P)

SCLM Main Menu

Chapter 9. Using SCLM Functions 149

SCLM View - Entry Panel Action Bar Choices

The action bar displays the same choices as those discussed in “SCLM Main Menu

Action Bar Choices:” on page 148. Additional choices are:

Reflist

The Reflist pull-down menu has the following choices:

 Reference Data Set

List

Displays a list of up to fifteen data set names that have been

entered in the ″Other″ Data Set Name field and other fields in ISPF

that take a data set name as input.

Reference Library List Displays a list of the last eight ISPF libraries that you have

referenced.

Personal Data Set List Displays a list of up to thirty data set names that you have created

and saved.

Personal Data Set List

Open...

Displays the Open dialog for all Personal Data Set Lists.

Personal Library List Displays a list of up to eight ISPF Library specifications that you

maintain.

Personal Library List

Open...

Displays the Open dialog for all Personal Library Lists.

Refmode

The Refmode pull-down menu has the following choices:

 List Retrieve Sets referral lists, personal data set lists, and personal library lists

into a retrieve mode. When you select an entry from the list, the

information is placed into the Dsname Level field, but the Enter key

is not simulated. You can then set other options before pressing the

Enter key. (If this is the current setting, this choice is unavailable.)

List Execute Sets referral lists, personal data set lists, and personal library lists

into a retrieve mode. When you select an entry from the list, the

information is placed into the Dsname Level field, and the Enter

key is simulated. (If this is the current setting, this choice is

unavailable.)

SCLM

The SCLM pull-down menu has the following choices:

 Library Displays the SCLM Library utility panel.

Sublib Displays the SCLM Sublibrary Management Utility panel.

Migration Displays the SCLM Migration Utility Entry panel.

DB Contents Displays the SCLM Database Contents panel.

Architecture Displays the SCLM Architecture Report panel.

Export Displays the SCLM Export Utility panel.

Import Displays the SCLM Import Utility panel.

Audit/Version Displays the SCLM Audit and Version Utility panel.

Delete from Group Displays the SCLM Delete from Group Utility panel.

Build Displays the SCLM Build panel.

Promote Displays the SCLM Promote panel.

View (Option 1)

150 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

SCLM View - Entry Panel Fields

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition. If you change this field, all groups in the concatenation

sequence are treated as data that SCLM does not control.

Group SCLM uses the group specified in the Group field on the SCLM

Main Menu to determine the four key or primary groups in the

hierarchy that initially appear on the panel. You can enter both

SCLM-controlled groups and non-SCLM-controlled groups in the

concatenation sequence at the same time.

If you specify a group that is defined in the project definition but

not allocated, and you then request a member list, the library (LIB)

members on the member list panel might not be what is expected.

SCLM treats an unallocated group as if the group field were blank

and ignores that group. When this situation exists, SCLM provides a

panel that shows how the LIB numbers correspond to the existing

groups.

Type The identifier for the type of information in the group, such as

SOURCE, ARCHDEF, or PANELS. If you change this field to a

value that is not defined to the project definition, all the groups in

the concatenation sequence are treated as data that SCLM does not

control.

Member The name of an SCLM or non-SCLM-controlled partitioned data set

member. If you leave this field blank or type a pattern, a member

list to appears.

Data Set Name Any fully qualified data set name, such as ’USERID.SYS1.MACLIB’.

If you include your TSO user prefix (defaults to user ID), you must

enclose the data set name in single quotation marks. If you omit the

TSO user prefix, your TSO user prefix is added to the beginning of

the data set name.

Volume Serial A DASD volume identifier. ISPF does not allow a data set to be

stored on more than one volume. SCLM does not use the system

catalog when you specify a volume serial.

Initial Macro An Edit macro to be processed before you begin viewing your

sequential data set or any member of a partitioned data set. This

initial macro allows you to set up a particular environment for the

View session you are beginning. If you leave the Initial Macro field

blank and your Edit profile includes an initial macro specification,

the initial macro from your Edit profile is processed. To suppress

the processing of an initial macro in your Edit profile, enter NONE

in the Initial Macro field.

Profile Name A profile name to override the default Edit profile.

Format Name The name of a format definition or blank if no format is used. A

format definition can include EBCDIC fields, DBCS fields, and a

Mixed field. If the specified format includes a Mixed field definition

and you specify NO in the Mixed Mode field, SCLM ignores the

operation mode.

Confirm

Cancel/Move/Replace

Specifies that you want ISPF to display a confirmation panel

whenever you issue a Cancel, Move, or Replace command.

Browse Mode Specifies that you want to Browse the data set using the Browse

function. This function is useful for large data sets and data sets

that are formatted RECFM=U.

View (Option 1)

Chapter 9. Using SCLM Functions 151

View on Workstation Select this option to view the host data set member on the

workstation using the workstation tool configured in the ISPF tool

integrator. For more information, see the section on Workstation

Tool Integration in the Settings (Option 0) chapter of the z/OS ISPF

User’s Guide Vol II. Do not select this option if you want to view the

host data set member on the host using SCLM VIEW.

Warn on First Data

Change

Specifies that you want ISPF to warn you that changes cannot be

saved in View. The warning is displayed when the first data change

is attempted.

Mixed Mode You can browse unformatted mixed data that contains both EBCDIC

(1-byte) characters and Double Byte Character Set (DBCS or 2-byte)

characters. To do this, select mixed mode by entering a slash (/)

next to the Mixed Mode field. If your terminal does not support

DBCS, SCLM View ignores the Mixed Mode field.

Data Set Password The password for OS password-protected data sets. This is not your

TSO user ID password.

Edit (Option 2)

The edit function is an interface to the ISPF editor. The SCLM editor ensures that

editing occurs only in development groups. SCLM automatically locks the member

when you begin the edit session.

The SCLM editor is the ISPF editor with an SCLM shell around it. If the member

has changed when you end the edit session or if an explicit SAVE operation is

performed, SCLM stores and parses the edited member and stores its accounting

record. You can only edit members that are stored in data sets under the control of

SCLM.

When you select the Edit option, the SCLM editor analyzes the hierarchy structure

for the specified project and displays the sequence of the groups in your library

concatenation. SCLM presents the four lowest key or primary groups for the

project previously specified in the project definition. The SCLM lock feature,

together with the ISPF “draw down” feature, ensures that the member you want to

modify is the most current version of a component in the library concatenation.

SCLM copies or draws down the member or compilation unit to your development

library in the development group from its first appearance in a higher key or

primary group in the library concatenation. The member or compilation unit

remains locked until you delete it or promote it to a higher group.

SCLM Edit also supports editing host data sets on the workstation. SCLM Edit will

draw down the member if necessary, lock it, and copy it into working storage. The

data set name is converted to a workstation file name and that name is appended

to the workstation’s current working directory. The host data set is transferred to

the workstation, and the working file is then passed to the user’s chosen edit

program. When the user finishes the edit session, the working file is transferred

back to the host and stored in the SCLM development group. Accounting

information is then saved for the member. The user will be prompted for a

language if the member is new or does not have a language. For more information,

see the section on Workstation Tool Integration in the Settings (Option 0) chapter

of the z/OS ISPF User’s Guide Vol II.

View (Option 1)

152 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Figure 50 shows the panel SCLM displays when you select Option 2, Edit, from the

SCLM Main Menu.

Note: The NRETRIEV command key is enabled to work with this option. See

“Name Retrieval with the NRETRIEV command” on page 145 for more

information.

SCLM Edit - Entry Panel Fields

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project.

Group The development group that you specified in the Group field on the

SCLM Main Menu. This group is followed by the next key group in

the hierarchy up to four groups.

The SCLM editor ensures that editing occurs only in development

groups by not allowing you to change the value of the first group

field. SCLM guarantees that the group is a valid development

library by verifying it against the specified project definition. (All

other displayed groups are in unprotected fields and you can alter

them.)

If the order of the groups is specified so that it does not match the

hierarchical view for the development group, SCLM does not allow

the edit session and displays the message “Invalid library order”. If

F1 is pressed twice, SCLM displays a panel showing all groups that

comprise the hierarchical view of the development group.

If you specify a group that is defined in the project definition but

not allocated, and then request a member list, the library (LIB)

numbers on the member list panel might not be what is expected.

SCLM treats an unallocated group as if the group field were blank

and ignores that group. When this situation exists, SCLM provides a

panel that shows how the LIB numbers correspond to the existing

groups.

 Menu RefList RefMode SCLM Utilities Workstation Help

 ──

 SCLM Edit - Entry Panel

 SCLM Library:

 Project . . : PDFTDEV

 Group MBURNS . . . STG . . . INT . . . SVT

 Type SOURCE

 Member . . . (Blank or pattern for member selection list)

 Initial Macro . .

 Profile Name . . . (If blank, defaults to data set type)

 Options

 Confirm Cancel/Move/Replace

 Mixed Mode

 Edit on Workstation

 Preserve VB record length

 Change code

 Authorization code . . (If blank, the default auth code is used)

 Parser Volume (If blank, the default volume is used)

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 50. SCLM Edit - Entry Panel (FLMED#P)

Edit (Option 2)

Chapter 9. Using SCLM Functions 153

Type The identifier for the type of information in the SCLM group, such

as SOURCE, ARCHDEF, or PANELS.

Member The name of an SCLM-controlled or non-SCLM-controlled

partitioned data set member. Leaving this field blank or typing a

pattern as a member name causes SCLM to display a member list.

Initial Macro An edit macro to be processed before you begin editing. This initial

macro overrides any IMACRO value in your profile.

If you leave the Initial Macro field blank and your edit profile

includes an IMACRO specification, the initial macro from your edit

profile is processed.

If you want to suppress the processing of an initial macro in your

edit profile, enter NONE in the Initial Macro field. Refer to z/OS ISPF

Edit and Edit Macros for more information.

Profile Name The name of an edit profile that you can use to override the default

edit profile. Refer to z/OS ISPF Edit and Edit Macros for more

information.

Confirm

Cancel/Move/

Replace

Allows you to specify whether a confirmation panel will appear for

these options.

Mixed Mode You can edit unformatted mixed data that contains both EBCDIC

(1-byte) characters and Double Byte Character Set (DBCS or 2-byte)

characters. To do this, you must specify Mixed Mode. When you

select Mixed Mode, the editor looks for shift-out and shift-in

delimiters surrounding DBCS data. If you do not select it, the editor

does not accept mixed data. If your terminal does not support

DBCS, SCLM Edit ignores the operation mode.

Edit on Workstation Select this option to edit the host data set member on the

workstation using the workstation editor configured in the ISPF tool

integrator. For more information, see the section on Workstation

Tool Integration in the Settings (Option 0) chapter of the z/OS ISPF

User’s Guide Vol II. Do not select this option if you want to edit the

host data set member on the host using SCLM EDIT.

Preserve VB record

length

When you select this field with a ″/″, it specifies that the editor

store the original length of each record in variable length data sets

and when a record is saved, the original record length is used as the

minimum length for the record. The minimum length can be

changed using the SAVE_LENGTH edit macro command. The

editor always includes a blank at the end of a line if the length of

the record is zero or eight.

Change Code Optionally, you can specify a change code to indicate why you

updated the member. Change codes cannot contain commas.

Authorization Code Optionally, you can specify a current authorization code for the

member. If you do not specify an authorization code, the default

authorization code is used for the member. Authorization codes

cannot contain commas.

Parser Volume The specific volume ID in which SCLM stores output from the

SCLM parser. This field is not required.

Comparison of SCLM and ISPF Editors

The SCLM edit function provides an interface to the ISPF editor. For example, you

can specify a profile name and an initial macro before editing a member. With the

SCLM editor, you can lock or parse a member, create or update an accounting

Edit (Option 2)

154 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

record, and specify change or authorization codes. Recursive editing is only

allowed within the data set concatenation currently being edited. Therefore, the

member name to edit must be supplied as part of the edit command (see “EDIT

Command”).

The parser supplied with SCLM does not recognize ISPF packed data. If the ISPF

pack mode is on, the parser supplied with SCLM returns statistical values

reflecting packed data. You must unpack the data before it is parsed by SCLM to

obtain correct statistical values.

When editing parts controlled by SCLM, it is important to use the SCLM editor.

The ISPF editor has a configuration table that supports three levels of awareness of

SCLM-controlled parts if trying to edit SCLM-controlled parts with the ISPF editor

(outside of SCLM):

No awareness ISPF edit allows SCLM members to be edited, with no warning or

message.

Warning Mode

ISPF edit displays an SCLM WARNING message when editing an

SCLM-controlled member. However, the ISPF edit will continue.

Fail Mode ISPF edit does not allow the edit to start on an SCLM-controlled

member.

 If the ISPF editor is operating in Fail Mode, edit recovery operates

in Warning Mode for purposes of the recovery; you will be able to

recover the member, and the SCLM WARNING message appears.

ISPF uses two checks to determine if a member is SCLM-controlled:

v The SCLM flag for the member is on (this is set by SCLM SAVE)

v A project.PROJDEFS.LOAD data set exists, where the high-level qualifier of the

data set being edited is equal to project.

When the configuration table has Fail Mode set, both conditions must be true for

the ISPF editor to operate in Fail Mode. If only the second condition is true, the

ISPF editor operates in Warning Mode.

SCLM Command Macros

The following sections describe the command macros available for use with the

SCLM editor.

EDIT Command

The SCLM EDIT command allows a user to recursively edit a member within the

same hierarchy concatenation of a SCLM supported type. That is, as long as the

member exists within the groups and type specified in the Group and Type fields

on the SCLM Edit - Entry panel, recursive editing is allowed.

Command Format:

Save Command

The SCLM SAVE command is similar to the ISPF Save command except that the

member is automatically parsed and the accounting record of the member is

created or updated.

Edit Member-name

Edit (Option 2)

Chapter 9. Using SCLM Functions 155

The first time you save a member that has not been created using the SCLM editor

(or migrated into SCLM), SCLM displays the SCLM Edit Profile panel (see

Figure 51 on page 157) for you to specify a change code and the language of the

member. The profile appears if SCLM has not been informed of the language of the

member. The member is saved regardless of the parser return code on the first

save.

Command Format:

SCREATE Command

The SCLM SCREATE command is similar to the ISPF Edit CREATE command

except that the SCLM editor automatically creates an accounting record for the

created member, locks it out, and parses it.

If you do not enter a change code on the SCLM Edit - Entry panel (when one is

required), SCLM displays the SCLM Edit Profile panel shown in Figure 51 on page

157. Also, if the language of the member you want to create differs from the

language of the member you are editing, enter the SPROF command on the Edit -

Entry panel. The SCLM Edit Profile panel appears so that you can specify another

language. Otherwise, the newly created member has the same member attributes

as the current member.

Note: If the member to be created already exists in your group, SCLM returns a

message indicating that the member already exists. Thus you can avoid

inadvertently overwriting members.

The SCLM SCREATE command does not offer an extended panel for creating a

member outside the hierarchy.

Command Format:

 The label parameters indicate the lines from which the new member is created. For

example, assume that member OLD has been previously defined to SCLM. The

COBOL programming language is associated with member OLD. If you are editing

member OLD, place copy block (‘cc’) commands in the Line Command field

(usually represented by a six-digit number on the far left side of your edit screen)

of lines two and five of member OLD, and then issue this command from the

command line.

 SCREATE NEW

Member NEW will be added to the data set containing member OLD.

Furthermore, member NEW will contain lines two through five of member OLD

and will also inherit member OLD’s association with COBOL. In this case, the

block copy commands are the first and second labels passed with the SCREATE

command.

SMOVE Command

The SCLM SMOVE command is similar to the ISPF MOVE command except that

the SCLM editor deletes the accounting and build map information of the member

being moved if it exists in the development group from which the SMOVE was

issued.

 SAVE

 SCREATE member-name [label1 │ label2]

 SCRE

Edit (Option 2)

156 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The SCLM SMOVE command does not offer an extended panel for moving a

member from outside the hierarchy.

Note: Once a member is successfully moved, the source member of the move is

deleted. If you CANCEL out of the edit session where the SMOVE

command was initiated, the data is lost.

Command Format:

 The AFTER label parameter indicates the line after which to place the member that

is being moved. To create an AFTER label, enter an “A” or “a” in the Line

Command field (usually represented by a column of six-digit numbers on the far

left side of your display) for the line you want.

The BEFORE label parameter indicates the line before which to place the member

that is being moved. To create a BEFORE label, enter a “B” or “b” in the Line

Command field for the line you want.

SPROF Command

The SPROF command allows you to specify parameters that SCLM requires to

track a member through the hierarchy. SCLM displays the SCLM Edit Profile

panel, shown in Figure 51, to specify a language for a new member. This panel is

also displayed when you end the edit session if you did not enter a change code

on the SCLM Edit - Entry panel when it is required, or if the language of the

member has not yet been specified.

SCLM Edit Profile Panel Fields

 Language The language name to be used to process the member. This field is

required and must be the same as the LANG keyword specified on

the FLMLANGL macro.

 SMOVE member-name [AFTER label]

 [BEFORE label]

 Menu SCLM Utilities Help

 ──

 SCLM Edit Profile

 SCLM Library: PDFTDEV.SBURNF.SOURCE

 Member: NEWMEM

 Press the Enter key with the language field blank to view a list

 of valid languages or enter the desired values and press Enter.

 Enter the Cancel command to exit with no change.

 Language

 Change code . . (Use "=" to retrieve last entry)

 Description: . .

 Command ===>

 F1=HELP F2= F3=END F4=DATASETS F5=FIND F6=CHANGE

 F9=SWAP F10=LEFT F11=RIGHT F12=SUBMIT

Figure 51. SCLM Edit Profile (FLMEINFO)

Edit (Option 2)

Chapter 9. Using SCLM Functions 157

Change code Specify a change code to indicate why you updated the member.

This field is optional unless a change code verification routine is

defined for the hierarchy. Change codes cannot contain commas.

Member Description Specify a member description for use on the Utility Member List

panel (FLMUSM#P) when the field ″Show member Description″ is

selected on the SCLM Library Utility Entry panel (FLMUS#P).

You can change the information on this panel at any time during the edit session

by invoking SPROF. If you alter the Language field or modify the member, SCLM

parses and creates or updates the accounting record of the member when the

member is saved. If you leave the language field blank or enter an invalid

language, SCLM displays a selectable list of valid languages defined to the project.

SCLM processes the member and saves it in your development group if you alter

the language. SCLM processes the member and saves it in your development

group if you alter the change code and if the member does not exist in your

development library. If you alter the change code but do not modify the member

and it exists in the development group, SCLM regenerates only the accounting

information.

Enter END from the SCLM Edit Profile panel to end SCLM edit profile

specifications and return to the SCLM edit session. Enter CANCEL to cancel any

changes you have made on the panel, end SCLM edit profile specifications, and

return to the SCLM edit session.

SREPLACE Command

The SCLM SREPLACE command is similar to the ISPF Edit REPLACE command

except that the SCLM editor automatically parses, locks out, and creates an

accounting record for the replaced member. Use this command, not SCREATE,

when the member exists in the group.

If you do not enter a change code on the SCLM Edit Entry panel (when it is

required), SCLM displays the SCLM Edit Profile panel shown in Figure 51 on page

157. Also, the replaced member has the same member attributes as the current

member.

If you use SREPLACE and specify a member that does not exist, SCLM calls

SCREATE by default so that you can create the member.

The SCLM SREPLACE command does not offer an extended panel for replacing a

member outside the hierarchy.

The label parameters indicate the lines from which the current member is replaced

by the replaced member. The label parameters are optional.

Command Format:

 To see an example of using commands with labels, see “SCREATE Command” on

page 156.

 SREPLACE member-name [label1 │ label2]

 SREPL

Edit (Option 2)

158 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|
|
|
|
|
|

Overriding SCLM Command Macros

Because the SCLM editor uses ISPF edit macros to perform its functions, you

should not override SCLM command macro definitions, especially the END, SAVE,

CANCEL, and RETURN macros. If you need a user-defined “end” macro, use

another command name such as QUIT. At the end of this alternate end macro,

invoke the END, RETURN, SAVE, or CANCEL command to start the SCLM end

routines.

If you override an SCLM macro by using DEFINE, the macro is not redefined until

you begin a new edit session.

You can also override SCLM edit macros by entering the ISPF BUILTIN command

(for example, BUILTIN SAVE).

Utilities (Option 3)

Figure 52 shows the panel SCLM displays when you select option 3, Utilities, from

the SCLM Main Menu.

 When you select one of these options, the corresponding utility is displayed.

 “Library Utility” on page 160

 “Migration Utility” on page 176

 “Database Contents Utility” on page 178

 “Architecture Report Utility” on page 188

 “Export Utility” on page 195

 “Import Utility” on page 199

 “Audit and Version Utility” on page 203

 “Delete from Group Utility” on page 214

 “Package Backout Utility” on page 218

 Menu Utilities Help

 ──

 SCLM Utilities Menu

 1 Library View, browse, edit, delete, build or promote SCLM

 controlled members and update member authorization

 codes

 2 Sublib Mgmt Browse or delete intermediate records and forms

 3 Migration Register the contents of a library with SCLM

 4 Database Contents Create reports and tailored data sets against

 SCLM database

 5 Architecture Report Create architecture report

 6 Export Extract SCLM accounting information

 7 Import Incorporate exported data into the hierarchy

 8 Audit and Version Display Audit and Version members

 9 Delete from Group Delete members, accounting records, build maps,

 intermediate code and records from a group

 10 Package Functions View, delete and restore backed-up packages

 11 Unit of Work View and process Unit of Work elements

 12 SCLM Explorer Browse the relationship tables of your project

 Option ===>

 F1=HELP F2= F3=END F4=DATASETS F5=FIND F6=CHANGE

 F9=SWAP F10=LEFT F11=RIGHT F12=SUBMIT

Figure 52. SCLM Utilities (FLMUDU#P)

Edit (Option 2)

Chapter 9. Using SCLM Functions 159

“Unit of Work Utility” on page 225

 “SCLM Explorer” on page 234

Library Utility

The library utility allows you to browse accounting records, members, and build

map records. In addition, you can use this utility to delete members and their

accounting and build map data, view, edit, build and promote members, and

update a member’s authorization codes.

The library utility is completely interactive and parallels the ISPF library utility.

Figure 53 shows the SCLM panel that appears when you select Option 1, Library,

from the SCLM Utilities panel.

 The fields on the SCLM Library Utility panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition. You cannot change the Project or the Alternate fields on

this panel.

Group The group that you specified in the Group field on the SCLM Main

Menu. The group field can be modified to specify other groups

defined to the project.

Type The identifier for the type of information in the ISPF library.

 Menu SCLM Utilities Help

 ──

 SCLM Library Utility - Entry Panel

 blank Display member list E Edit member

 A Browse accounting record V View member

 M Browse build map C Build member

 B Browse member P Promote member

 D Delete member, acct, bmap U Update authorization code

 SCLM Library:

 Project . : SLMTEST6

 Group . . . JPHILP

 Type SOURCE

 Member . . . (Blank or pattern for member selection list)

 Select and rank member list data . . TAM (T=TEXT, A=ACCT, M=BMAP)

 Enter "/" to select option

 / Hierarchy view Process . . 3 1. Execute

 / Confirm delete 2. Submit

 / View processing options for Edit 3. View options

 / Show Member Description

 Option ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 53. SCLM Library Utility (FLMUS#P)

Utilities (Option 3)

160 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Member The name of an SCLM library member. You can display a member

list by leaving the Command field and the Member field blank or

by leaving the Command field blank and entering a pattern as the

member name. See “Specifying Selection Criteria” on page 180 for

details. Valid pattern characters are the asterisk (*) and the logical

NOT symbol (¬).

Select and rank

member list data

A one, two, or three character string that indicates the kind of

information that appears on the member list panel. You can specify

strings composed of the following characters:

T, to display text data; A, to display accounting data; and M, to

display build map data.

Each character can only be used once. The order of the characters

determines the order of the data on the member list. This option

limits the type of data that appears with each member on the list,

and only members that have the types of data specified will appear.

For example, a member that only has text will not appear if the

string AM is specified. All types of data that exist for a member at a

particular level are subject to processing by library utility

commands.

If only two types of data are specified and one of those is A

(accounting), the language associated with the member will also be

displayed. If only A is specified, both the language and

authorization code will be displayed.

Hierarchy view Selects as input the library entered on the panel, as well as all the

libraries in its hierarchy view. The hierarchy is searched from the

bottom up for the first occurrence of the specified member. If you

do not select “Hierarchy view”, only the library entered on the

panel is used as input. This option is valid with all Library Utility -

Entry panel or member list commands except delete, which defaults

to a NO value.

Confirm delete Allows you to specify whether you want a confirmation panel to

appear when attempting to delete objects (text, accounting

information, or build map information) with the SCLM library

utility. If you select this field, the Confirm Delete panel appears

every time you request a delete. In addition to confirming the delete

request, this panel enables you to choose which information you

want to delete for the member. If you do not select this field, the

Confirm Delete panel does not appear for deletions and all data is

deleted without any additional user interaction.

View processing

options for Edit

Allows you to indicate whether you want to verify or update edit

processing options or allow them to default to the values that last

appeared on the Edit Data Entry panel. When you select this option,

the SCLM Edit Data Entry panel displays so that you can verify or

update edit processing options. If you do not select it, Edit options

default to those values that last appeared on the Edit Data Entry

panel. The panel does not appear.

Show member

description

Allows you to display the member list panel FLMUSM#P, which

contains an extra line displaying the description associated with a

member. The Description is entered via SPROF command.

Library Utility

Chapter 9. Using SCLM Functions 161

Process Allows you to specify the processing mode for the Build or Promote

commands. The value of the “Process” field is unique to the library

utility. You will not be carried to or from the “Process” field on any

other SCLM panel.

Execute Invokes SCLM Build or Promote in the

foreground. The Build or Promote options default

to those values that last appeared on the Build or

Promote Data Entry panel. The panel does not

appear.

Submit Invokes SCLM Build or Promote in the

background. The Build or Promote options default

to those values that last appeared on the Build or

Promote Data Entry panel. The panel does not

appear.

View options Displays the SCLM Build or Promote Data Entry

panel so that you can verify or update Build or

Promote processing options before execution.

Note: The value for “Confirm delete” is reset each time the library utility is

entered. The values for “Select and rank member list data”, “Process”,

“Hierarchy view”, and “View processing options for Edit”, are kept from

session to session until you change them.

Library Utility Commands

Type your selection in the Command field.

 A, B, or M SCLM displays the specified member or record if it is present.

While in Browse, all Browse commands are supported. Note that

although a hierarchy view may be specified, the Library Utility only

allocates the data set containing the existing version of the

requested member. The Browse command executed from within

View can only operate on members within the allocated data set.

V SCLM displays the specified member if it is present.

D SCLM deletes member data such as text, accounting, and build map

records. When Confirm Delete has been selected on the Library

Utility panel, you can choose which information to delete for the

member (text, accounting information, and/or build map

information). Otherwise, all information for the member is deleted.

Delete is only allowed at the group specified on the Library Utility

panel.

If you delete a member from a key group that also exists in a

non-key group in a higher layer of the hierarchy, you must delete

the member from the non-key group manually.

E The SCLM Editor is invoked for the member specified in the

Member field. A development group must be specified in the Group

field. Once in the SCLM Editor, all Edit commands are supported.

The library utility allocates the first four key groups for a project. If

the member exists at a higher group, the group containing the

member will be allocated, replacing the original fourth allocated

group. The COPY, MOVE, and EDIT commands can only operate

on members within the allocated data sets. The use of COPY or

MOVE from within an Edit session invoked from the utility is not

recommended.

C SCLM Build is performed on the specified member.

Library Utility

162 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

P SCLM Promote is performed on the specified member.

U SCLM displays an input panel and updates the authorization code

according to your input. Update is only allowed at the group

specified on the Library Utility panel. (To delete or update any data,

you must have at least UPDATE authority to the specified data set.)

Any value entered in the “New authorization code” field on the

input panel remains there until it is changed by the user or the

library utility is exited and entered again. There is a brief period

during which changes made to a member’s authorization code by

another session or user will not be recognized. If you receive an

unexpected error message while updating a member’s authorization

code, use the browse accounting record command to check the

member’s current authorization code. If the authorization code

needs to be updated, try the update authorization code command

again.

To browse, view, edit, delete, build, promote, or update the authorization code for

several members, use the member selection list.

Member Selection List

You can browse, view, delete, build, promote, or update the authorization code for

members by making selections from a member selection list. To display a member

selection list, perform the following steps:

1. Leave the Command field blank.

2. Type the group and type information in the appropriate fields. The Project field

contains the project you specified on the SCLM Main Menu. You cannot change

this field here.

3. Leave the Member field blank or enter a pattern.

4. Choose the data to appear and the order to display it on the member list panel

by entering a string in the “Select and rank member list data” field.

5. Indicate whether you want a hierarchy view by entering a slash (/) in the

“Hierarchy view” field.

6. Press Enter.

Note: The NRETRIEV command key is enabled to work with this option. See

“Name Retrieval with the NRETRIEV command” on page 145 for more

information.

Figure 54 on page 164 shows the panel SCLM displays when you complete the

instructions for displaying a member list. This display contains text, accounting,

and build map data, indicating that the string ″TAM″ was entered for the “Select

and rank member list data” field. Use the scroll commands or the LOCATE

command to scroll the list.

Library Utility

Chapter 9. Using SCLM Functions 163

Another way to view a member list is shown in Figure 55. In this example, the

string ″AT″ was specified for the “Select and rank member list data” field, causing

accounting and text data, in that order, to appear on the member list panel. Also

note that a hierarchy view with the member description was requested for this

member list.

 Menu SCLM Functions Utilities Help

 ──

 Member List : SLMTEST6.DEV1.SOURCE Member 1 of 20

 A=Account M=Map B=Browse D=Delete E=Edit

 V=View C=Build P=Promote U=Update

 Member Status Text Chg Date Chg Time Account Bld Map

 AAAA DEV1 2002/08/02 13:31:12 DEV1

 CPYRITE DEV1 2002/01/21 13:08:15 DEV1

 DDDDD DEV1 2002/06/27 10:43:30

 DTL2 DEV1 2002/01/21 13:08:04 DEV1 DEV1

 FLM01EQU DEV1 2002/04/11 09:43:53 DEV1

 FLM01MD1 DEV1 2002/02/14 12:24:05 DEV1 DEV1

 FLM01MD2 DEV1 2002/02/14 12:24:10 DEV1 DEV1

 FLM01MD3 DEV1 2002/02/14 12:23:52 DEV1 DEV1

 FLM01MD6 DEV1 2002/01/22 13:06:08 DEV1

 HANK DEV1 2002/05/24 10:26:00 DEV1 DEV1

 HANK2 DEV1 2002/04/17 11:04:40 DEV1 DEV1

 HANK3 DEV1 2002/06/27 12:57:47 DEV1 DEV1

 Command ===> Scroll ===> PAGE

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 54. Member Selection List (FLMUSL#P)

 Menu SCLM Functions Utilities Help

 ──

 Member List : SLMTEST6.DEV1.SOURCE - HIERARCHY VIEW - Member 1 of 23

 A=Account M=Map B=Browse D=Delete E=Edit

 V=View C=Build P=Promote U=Update

 Member Status Account Language Text Chg Date Chg Time

 AAAA DEV1 TXT2 DEV1 2002/08/02 13:31:12

 Temporary module (copy of FLMEDU)

 CPYRITE DEV1 DTL DEV1 2002/01/21 13:08:15

 copywrite copy book

 DDDDD DEV1 2002/06/27 10:43:30

 DTL2 DEV1 DTL DEV1 2002/01/21 13:08:04

 DTL source for panel TTMENU

 FLM01EQU DEV1 HLAS DEV1 2002/04/11 09:43:53

 Assembler copybook - Register equates

 FLM01MD1 DEV1 HLAS DEV1 2002/02/14 12:24:05

 Command ===> Scroll ===> PAGE

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 55. Member Selection List with Hierarchy and Member Description View (FLMUSM#P)

Library Utility

164 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The fields that appear on the SCLM Member Selection List panel are:

 Member The names of the members fitting the criteria you specified on the

SCLM Library Utility - Entry panel.

Status SCLM displays the status of the member according to the line

command you select. The status field indicates the action that was

taken for the selected member. For example, a status of *EDITED

will appear next to any member for which the ’E’ command is

selected, even if the member is not saved. The status for delete

indicates the group at which the delete occurred. The status

displayed for each command is shown in the following example:

 A Display an accounting record *BRACCT

 B Browse a member *BRTEXT

 C Build a Member *BUILT

 D Delete a member *D-GROUP1

 E Edit a member *EDITED

 M Display a build map record *BRBMAP

 P Promote a member *PROMOTED

 U Update an authorization code *UPDATED

 V View a member *VIEWED

When an error occurs or the member name is changed on the edit

or Build Data Entry panel, the status for the member will be blank.

Account A group name in this field indicates that the accounting information

for the associated member exists.

Language The language of the member appears in this column when

accounting data is requested and when space permits.

Text A group name in this field indicates that the member exists.

Chg Date The value of this field depends on the type of data requested for

display. When text data is requested, this field contains the last

change date for the member from the PDS directory. If accounting

data is requested but text is not, this field contains the change date

from the accounting record. If only build map data is requested, the

change date from the build map appears.

Chg Time The value of this field depends on the type of data requested for

display. When text data is requested, this field contains the last

change time for the member from the PDS directory. If accounting

data is requested but text is not, this field contains the change time

from the accounting record. If only build map data is requested, the

change time from the build map appears.

Bld Map A group name in this field indicates that the build map record for

the associated member exists.

Authcode The current authorization code for the member appears in this

column when accounting data is requested and when space permits.

The following primary commands are valid on the Member Selection List:

 SORT The SORT command sorts the member list by any field displayed

on the member list, except the line command field and Status field.

The field names are the column headings.

REFRESH The REFRESH command, which can also be entered as REF,

refreshes the member list, adding new members, removing those

that have been deleted, and updating the information displayed for

each member. It also resets the line command field and Status field

and sorts the member list again by member name. Any pending line

commands are processed before the REFRESH command.

Library Utility

Chapter 9. Using SCLM Functions 165

HIER The HIER command is used to reset the Hierarchy View value

specified on the Library Utility panel from the member list. Syntax

is as follows:

HIER ON|OFF

HIER OFF displays only those members found in the group

specified on the Library Utility panel. HIER ON displays the first

occurrence of a member found in the specified group or any higher

group within the view of the project hierarchy.

LOCATE The LOCATE command scrolls the list to the requested member.

UP Scrolls up.

DOWN Scrolls down.

All of the Library Utility line commands can also be entered as primary commands

from the member list command line. The syntax for the primary commands is:

command member

where command is the 1-character command and member is the member against

which the command is to be performed. The Edit (E) primary command can be

used to edit a new member. At the end of the edit session, the new member will

be added to the list in sorted order.

Accounting Record

If you enter the A line command to display an accounting record, SCLM displays a

panel showing the information recorded for the member as shown in Figure 56.

 The display fields on the Accounting Record panel cannot be modified.

Use a slash (/) to select an option and press Enter to display additional panels.

You can browse the statistics or lists of change codes, includes, compilation units,

or user entries referenced by a member. You can also scroll the lists.

Figure 56. Accounting Record (FLMUSA#P)

Library Utility

166 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Physical Data Set The physical data set in which the SCLM-controlled member

actually resides. SCLM allows you to define project data sets that

don’t have conventional SCLM data set names by providing SCLM

aliases for them. When this is the case, the name appearing on the

panel title is the SCLM alias for the actual data set in the “Physical

Data Set” field.

Accounting Status The status of the member.

EDITABLE Members that you can edit

NON-EDIT Members that SCLM creates as a result of build

processing

LOCKOUT Members that are locked at the development

group in which they exist but have not been

parsed. You can use the SCLM Editor or Migration

Utility to change the status of these members to

EDITABLE before attempting to build or promote

them.

INITIAL Members for which a lock has been requested.

This status generally appears while a member is

being edited. When the edit is complete, the status

changes to EDITABLE.

Change User ID The user ID of the person who made the last update to the member.

Member Version The number of times that an EDITABLE member was drawn down.

The member version is also updated whenever the language of the

member is changed. For a NON-EDIT member, such as OBJ, it is

the number of times that the member was generated by SCLM.

New members use a version of 1.

Language The language of the member.

Creation Date The date the member was first registered with SCLM.

Creation Time The time the member was first registered with SCLM.

Promote User ID The user ID of the person who last promoted the member.

Promote Date The date the member was last promoted.

Promote Time The time the member was last promoted.

Predecessor Date The change date of the member that this member overlays when it

is promoted up the hierarchy.

Predecessor Time The change time of the member that this member overlays when it

is promoted up the hierarchy.

Change Group The name of the group in which the member was last updated.

Authorization Code The current authorization code for the member.

Auth. Code Change A nonblank value indicates that SCLM is attempting to update the

Authorization Code for this member. If the update completes

successfully, the value of this field becomes the new authorization

code of the member.

Translator Version The version of the translator used during build processing.

Change Date The last date a developer modified the member.

Change Time The last time a developer modified the member.

Access Key An identifier used to restrict access to a member.

Library Utility

Chapter 9. Using SCLM Functions 167

Build Map Name For NON-EDIT members, this field specifies the name of the build

map that was created when the NON-EDIT member was created.

For EDITABLE members, this field is blank.

Build Map Type For NON-EDIT members, this field specifies the type of the build

map that was created when the NON-EDIT member was created.

For EDITABLE members, this field is blank.

Build Map Date The date used by SCLM to determine if the member has changed

since the last build. For EDITABLE members, this field is usually

the same as the Change Date field. When the Change Date field is

updated, the Build Map Date field is updated. For NON-EDIT

members, this field is the date of the last build of the member.

Build Map Time The time used by SCLM to determine if the member has changed

since the last build. For EDITABLE members, this field is usually

the same as the Change Time field. When the Change Time field is

updated, the Build Map Time field is updated. For NON-EDIT

members, this field is the time of the last build of the member.

Display Statistics SCLM displays the Accounting Record Statistics panel, shown in

Figure 57.

Number of Change

Codes

The number of change codes entered against the member. See

Figure 58 on page 170.

Number of Includes The number of include references in the source member. See

Figure 60 on page 171.

Number of User

Entries

The number of user data entry records associated with the member.

Statistics

SCLM displays statistical information, as shown in Figure 57, when you enter a ″/″

in the Display Statistics field on the Accounting Record panel. These statistics are

parser-dependent.

PROJ1.USERID.CLIST(FLM01MD5) : Statistics

Statistics:
Total Lines . . . : 13 Total Statements . . . : 4
Comment Lines . . : 2 Comment Statements . . : 2
Noncomment Lines . : 5 Control Statements . . : 0
Blank Lines . . . : 6 Assignment Statements . : 0
Prolog Lines . . . : 0 Noncomment Statements . : 2

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Figure 57. Accounting Record Statistics (FLMUSS#P)

Library Utility

168 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The fields on the Accounting Record Statistics panel are:

 Total Lines The total number of lines in the member, which is equal to the sum

of comment lines, noncomment lines, and blank lines.

Comment Lines The number of comment lines. A comment line is any line that has

comment information only. If a line has both a statement and a

comment, SCLM considers it a noncomment line.

Noncomment Lines The number of source lines. A noncomment line is a source line that

contains at least part of a noncomment statement. If a line has both

a statement and a comment, SCLM considers it a noncomment line.

Blank Lines The number of blank lines in the member. A blank line is

language-independent; no nonblank characters can be on it.

These statistics are parser-dependent.

Prolog Lines The number of prolog lines in the member.

Total Statements The sum of the comment statements and the noncomment

statements in the member.

Comment Statements The number of comment statements. A comment statement is

denoted by a set of beginning and ending comment delimiters for

the particular language being parsed. If an ending delimiter is not

defined for a language, the end of the line is used. A comment

statement can span several lines, or several comment statements can

exist on a single line.

Control Statements The number of logical control statements.

Assignment

Statements

The number of assignment statements.

Noncomment

Statements

The number of complete statements that SCLM can process.

Noncomment statements are language-dependent, follow language

syntax rules, and are separated by the language delimiter. A

noncomment statement can span several lines, or several

noncomment statements can exist on a single line.

Note: The parser that is invoked for the member determines the field values. The

definitions apply for ISPF-supplied parsers.

Change Code List: Figure 58 on page 170 and Figure 59 on page 170 are examples

of the information SCLM displays when you enter a ″/″ in the “Number of

Change Codes” field on the Accounting Record panel. If you are allowed to delete

the records you specify, Figure 58 on page 170 is displayed. If not, you will see

Figure 59 on page 170.

Library Utility

Chapter 9. Using SCLM Functions 169

The fields on the Change Code List panel are:

 Delete You specify that you want to delete the change code when you

enter D in this field. SCLM selects the change code for deletion.

Status SCLM displays *SELECT to indicate the change code you selected.

Enter the END command to confirm the delete request.

Change Code A value assigned to indicate why a member was updated.

Figure 58. Change Code List - Records That Can Be Deleted (FLMUSC#P)

Figure 59. Change Code List - Records That Cannot Be Deleted (FLMUSC2P)

Library Utility

170 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Change Date The last date a developer modified the member for the associated

change code. The Change Date on the top of the list is the most

recent.

Change Time The last time a developer modified the member; it is associated

with the Change Date.

Include List: Figure 60 is an example of the information SCLM displays when

you enter a ″/″ in the “Number of Includes” field on the Accounting Record panel.

 The fields on the Include List panel are:

 Include The name of an include reference in the source member. An include

reference is a generic term for code that SCLM inserts when it

compiles the source member. The syntax of an include statement in

a program is language-dependent and is defined by language

syntax rules.

Include set The include-set name is used to associate an include with the types

in the hierarchy where that include can be found. The include-set

name is returned by the parser. A blank name indicates that the

include is associated with the default include set.

User Data Entries: Figure 61 on page 172 is an example of the information SCLM

displays when you enter a / in the “Number of User Entries” field on the

Accounting Record panel.

Figure 60. Include List (FLMUSI#P)

Library Utility

Chapter 9. Using SCLM Functions 171

The fields on the User Data Entries panel are:

 Del You specify that you want to delete the user data entry record when

you select D in this field.

Stat SCLM displays *SEL to indicate the user data entry record you

selected. Enter the END command to confirm the delete request.

Rec# SCLM displays a record number with the first line of each user data

entry record.

User Data Entry Project-specific information entered into the accounting record by

the SAVE service. The user data entry record can span two lines for

a maximum of 128 characters.

Build Map Record

Enter the M line command on the SCLM Library Utility panel or on the member

selection list to display a build map record. The Build Map Record panel, shown in

Figure 62 on page 173, displays the fixed build map information SCLM records for

a member.

PROJ1.PFS(FLM01MD5) : User Data Entries ______________________________________

Line Command: D - Delete User Data Entry
Enter Cancel command to exit without processing selections

Del Stat Rec# User Data Entry
--- ---- ---- --

1 This record is very long to prove that two lines can be shown
in one record.

2 This record is short.
********************************Bottom of data *******************************

Command ===> ___ SCROLL ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Figure 61. User Data Entries (FLMUSE#P)

Library Utility

172 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The fields on the Build Map Record panel are:

 Change User ID The user ID of the person who made the last update to the member.

Member Version The number of times that the build map has been generated by

SCLM. The first time a build map is generated a version of 1 is

used.

Language The language of the build member. This language is determined by

SCLM Build; it is not specified by the user or the project manager.

Creation Date The date the build map was first created.

Creation Time The time the build map was first created.

Change Group The name of the group in which the member was last updated.

Change Date The last date the member was modified.

Change Time The last time the member was modified.

Promote Date The date the member was last promoted.

Promote Time The time the member was last promoted.

Promote User ID The user ID of the person who last promoted the member.

Translator Version The version of the translator used during build processing.

Language Version The version of the language that SCLM uses in language-based

builds.

Build Map Name The name of the member with which the build map is associated.

Build Map Type The type of the member with which the build map is associated.

Build Map Date The date of the build that created the build map.

Build Map Time The time of the build that created the build map.

Review Build Map

Contents

SCLM displays the Build Map Contents panel, shown in Figure 63

on page 174, when you select this field.

Figure 62. Build Map Record (FLMUSB#P)

Library Utility

Chapter 9. Using SCLM Functions 173

Build Map Contents

When you enter a / in the Review Build Map Contents field, SCLM displays the

build map contents in a browse data set, as shown in Figure 63. The data set

shows the contents of a build map record for an architecture defined in a CC

architecture member.

 The fields on the Build Map Contents panel are:

 Keyword You can use certain keywords to identify architecture information.

See “Architecture Statements” on page 272 for more details. The

internal build map keywords, denoted with an asterisk, are

described as follows.

The architecture member example contains two keywords: OBJ, and

LIST. If a keyword is denoted with an asterisk (*), it includes

references found in source member FLM01MD5.

Member The name of the member referenced in the architecture member.

Type The name of the type containing the member.

Last Time Modified For an EDITABLE member, this field is the last time SCLM parsed

and stored the specified member. For SCLM-generated (NON-EDIT)

members, such as OBJ and LIST, this field is the last time SCLM

generated the member.

Figure 63. Build Map Contents (FLMUSBRP)

Library Utility

174 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Internal Keywords Keywords that SCLM uses to track references. The internal keyword

I# indicates the group in which the members were first referenced.

The following internal keywords are produced by SCLM internal

processing and supported by SCLM. They cannot be used in the

actual architecture definitions.

Keyword Description

PINCL* An architecture definition that generates the

output shown on the previous build map entry.

The output represents an input to the translate

process.

INT* An intermediate that was generated by the build

of the member that is being viewed. This keyword

represents the output of a translate process.

INTDEP* Intermediate member on which the member being

viewed is dependent. This keyword represents the

input of a translate process.

WITH* Indicates an upward dependency.

DYNI* Indicates a dynamic include.

Ix* Includes as determined by the accounting record

for the main source member, where x is in the

range (1–99).

EXTDPEND* Indicates an external dependency.

Authorization Code Update

Type U on the Library Utility panel or the member selection list to display the

Authorization Code Update panel. Figure 64 shows the panel SCLM displays for

you to update the authorization code for a member.

Figure 64. Authorization Code Update (FLMUSU#P)

Library Utility

Chapter 9. Using SCLM Functions 175

The fields on the Authorization Code Update panel are:

 Member to be

updated

The member name you entered in the Member field on the SCLM

Library Utility panel.

Old Authorization

Code

The current authorization code for the member.

New Authorization

Code

The new authorization code for the member.

Enter the new authorization code in this field. Then press Enter to

confirm the update request and update the authorization code, or

enter END to cancel the update request. Authorization codes cannot

contain commas.

Migration Utility

Using the migration utility, you can introduce members or groups of members to

an SCLM project and place them under SCLM control in a development group.

The migration utility also lets you verify authorization codes, prohibit

simultaneous updates of members, and collect statistical, dependency, and

historical information for each member processed without using the SCLM edit

function. SCLM collects dependency information, which identifies software

components that need another software component to complete successfully.

Before you start MIGRATE, the members must exist in the development library

you specify. Upon successful completion of MIGRATE, each member selected will

have valid SCLM accounting information. A typical scenario used to migrate

existing project data follows:

1. Copy all of the members that have the same language into a development

library.

2. Start MIGRATE using * for the member pattern and the appropriate language

to parse all members and store their statistical, dependency, and historical

information.

3. Copy all of the members that have a different language into the development

library.

4. Start MIGRATE again using * for the member pattern and the new language.

5. Continue until all of the members have been migrated.

If some of the members have SCLM accounting information, the MIGRATE service

verifies that the accounting information matches the member in the development

library. MIGRATE takes no action for members that already have valid SCLM

accounting information, unless executed in forced mode.

Use this utility when you have a large number of members that have not been

entered in your project database, such as members that you did not create with the

SCLM edit function.

In addition to the SCLM editor, the Migration Utility lets you indicate the members

you want tracked. Use this utility to enter one or more members into a database of

a project (for example, during a conversion to SCLM). In development groups, you

can also use it to lock, parse, and create accounting records for members that have

not been registered to SCLM.

Like the SCLM editor, the migration utility verifies authorization codes, prohibits

simultaneous updates of members, and collects statistical, dependency, and

historical information for every member processed. SCLM stores this information

Library Utility

176 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

in the database of a project. For a complete description of the lock, parse, and store

process, refer to the z/OS ISPF Software Configuration and Library Manager Reference.

Figure 65 shows the panel that appears when you select Option 3, Migration, from

the Utilities Panel.

Note: The NRETRIEV command key is enabled to work with this option. See

“Name Retrieval with the NRETRIEV command” on page 145 for more

information.

The action bar displays the same choices as those discussed in “SCLM Main Menu

Action Bar Choices:” on page 148. An additional choice is Jobcard.

The fields for the Migration Utility - Entry panel are.

 Project The project that you specified on the SCLM Main Menu. You cannot

change this field. An Alternate field also appears if you specified an

alternate project.

Group The group in which the members to be migrated are located. This

group must be defined in the project definition and must be a

development group.

Type The type in which the members to be migrated are located. This

type must be defined in the project definition.

Member The name of the member you want processed. You can use patterns

for the member name. See “Specifying Selection Criteria” on page

180 for details.

Authorization code The authorization code for a member. SCLM cannot process a

member if the authorization code assigned to a member is not in

the group being accessed. Authorization codes cannot contain

commas.

Figure 65. SCLM Migration Utility (FLMUM#P)

Migration Utility

Chapter 9. Using SCLM Functions 177

Change code The change code for the member. To enter a different change code

for the member, type over the displayed change code. A change

code verification routine can verify the code you entered before it

processes the member. Change codes cannot contain commas.

Language The language of the member. Refer to the z/OS ISPF Software

Configuration and Library Manager Reference for a list of languages for

which SCLM supplies parsers.

Mode Select one of the following:

Conditional

To stop processing members if migrate discovers an error

that is greater than the GOODRC parameter specified for a

language parser in the project definition.

 If you have a list of members that you want to place under

SCLM control, and migrate fails for one of those members,

processing stops after the first error. Migrate does not

process any other members that match the specified

criteria.

Unconditional

To continue processing regardless of errors discovered

during parsing of each member.

 If you have a list of members that you want to place under

SCLM control, migrate attempts to process all the members

matching the selection criteria, regardless of any errors

encountered.

Forced Forces SCLM to create a new accounting record for the

members specified regardless of previous status. Processing

stops after the first error is encountered.

 If you have a list of members that need to be changed,

migrate will create new accounting records for any

members specified. This can be used to update language,

authorization code or change code information for the

specified members.

Output control Specify the destination for messages, report, and listings when they

are executed (Ex) or submitted (Sub), by entering the corresponding

destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4

for None.

Process You can call the processing part of the migration utility from the

interactive or batch environment by selecting Execute or Submit,

respectively. If you request batch processing by selecting Submit,

you must specify the job statement information that is used in the

JCL generated for batch processing.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Database Contents Utility

You can use the SCLM database contents utility to retrieve information about the

project hierarchy from the project database and produce a report. You control the

order and format of the data in the report. The utility generates a report that lists

the members that match your selection criteria.

Migration Utility

178 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

This accounting data can then be extracted for members in the database that meet

the selection criteria you specify.

The output from the database contents utility can be used as input to other

project-defined tools or as input to the SCLM services using the FILE format of

FLMCMD.

Figure 66 shows the panel that appears when you select Option 4, Database

Contents, from the Utilities panel.

 You can use patterns for all of the selection criteria fields (except Project and

Alternate), as described in “Specifying Selection Criteria” on page 180.

The fields on the Database Contents Utility panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project.

Group The groups that are to be reported. Only groups defined to the

project definition are allowed.

Type The name of the type you want processed. Only types defined to

the project definition are allowed.

Member The name of the member you want processed.

Change additional

selection criteria

Select this field if you want to change the additional selection

criteria. The panel shown in Figure 67 on page 181 appears when

you select this.

If you change additional selection criteria, the changes are carried

over from one execution to another. If you do not select this field,

and thus do not change the additional criteria, the criteria from the

last report are used.

Menu SCLM Utilities Jobcard Help
--

SCLM Database Contents Utility - Entry Panel

Selection criteria: (Patterns may be used)
Project . . : PROJ1 Alternate - INT
Group USERID . . . ________ . . . ________

. ________ . . . ________
Type *
Member . . . *

Enter "/" to select option
/ Change additional selection criteria

Output control:
Ex Sub Process . . 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer
Tailored . . 3 3 3. Dataset Printer . .

4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 66. SCLM Database Contents Utility (FLMRC#P)

Database Contents Utility

Chapter 9. Using SCLM Functions 179

Output control Specify the destination for messages, reports, and tailored output

when they are executed (Ex) or submitted (Sub), by entering the

corresponding destination number: 1 for Terminal, 2 for Printer, 3

for Data set, or 4 for None. You cannot select Terminal for both

Report and Tailored Output. Similarly, you cannot select None for

both Report and Tailored Output. If the tailored output is to be

used as input to a tool or to the SCLM services, Data set should be

specified for Tailored Output.

If you enter Terminal, Printer, or Data set in the Tailored Output

field, the panel shown in Figure 69 on page 184 appears.

Process You can call the processing part of the database contents utility

from the interactive or batch environment by selecting Execute or

Submit, respectively. If you request batch processing by selecting

Submit, you must specify the job statement information that is used

in the JCL generated for batch processing.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Specifying Selection Criteria

You can use patterns to specify a variety of acceptable values for the accounting

information fields. A pattern consists of alphanumeric characters and three special

characters: an asterisk (*), a logical NOT symbol (¬), and an equal sign (=).

Use an asterisk to match any string of characters including the null string. You can

use it more than once.

Use the logical NOT symbol (¬) to negate the result of a match with the pattern.

You can specify it only once. The logical NOT symbol is removed from the pattern

before a match is attempted. Therefore, the position of the logical NOT symbol

within the pattern is not significant.

Use an equal sign (=) to indicate all groups that are at the same layer in the

hierarchy as the group you specify. An equal sign can only be specified once in the

pattern.

You should use the equal sign only in the group field, and you should not use the

equal sign in conjunction with other wildcard characters. If you use the equal sign,

you must specify a valid group name. The name specified is taken literally.

Note: Do not use an equal sign (=) as the first character in a pattern because it is a

special character in ISPF.

Use the patterns shown in Table 16 to select accounting information.

 Table 16. Pattern Examples

Pattern Match

AB*Z ABZ,ABCZ,ABCZYZ,ABCABZ

¬AB*Z ABC,XABZ,ABZX

*AB*Z ABZ,XABZ,ABCABZ,ABCZ,ABCZYZ

DEV1= DEV1,DEV2

Database Contents Utility

180 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 16. Pattern Examples (continued)

Pattern Match

STAGE1= STAGE1,STAGE2

Note: See Figure 47 on page 143 for an illustration of the hierarchy represented in the last

two rows.

The portion of the project database that SCLM displays is determined by the

parameters you specify.

The panel in Figure 67 appears if you select “Change additional selection criteria”

field on the Database Contents Utility panel.

If you do not select this, the panel does not appear and the reports are generated

with the values that already exist on the Additional Selection Criteria panel.

 The fields on the Additional Selection Criteria panel allow you to specify

accounting and architecture information that the utility uses to identify the

members to be processed.

Accounting Information Fields

When you specify values or patterns for the accounting information fields, the

utility selects any member that has accounting information matching all of the

patterns or values for all fields you specify.

Menu
--

SCLM Database Contents - Additional Selection Criteria

Selection criteria: (Patterns may be used)
Authorization code . . REL Data type . . 1 1. Account
Change code * 2. Build map
Change group USERID 3. Both
Change user id *
Language * Enter "/" to select option

/ First occurrence only
Hierarchy search information:
Architecture Control . . 3 1. In Scope . . 1 1. Normal

2. Out 2. Subunit
3. Not used 3. Extended

Architecture Group . . . USERID
Architecture Type . . . ARCHDEF
Architecture Member . .

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 67. SCLM Database Contents - Additional Selection Criteria (FLMRCA)

Database Contents Utility

Chapter 9. Using SCLM Functions 181

Use the following accounting information fields to select members:

 Authorization code Members that are assigned an authorization code matching the

authorization code. Authorization codes cannot contain commas.

The logical NOT symbol (¬) in the pattern specifies only the

members that are not assigned an authorization code matching the

pattern.

Change code Members that can be edited that were assigned a change code

matching the change code pattern. Change codes cannot contain

commas.

Only one of the change codes assigned to the member must match

the pattern. The logical NOT symbol (¬) in the pattern specifies only

the members that are not assigned a change code matching the

pattern.

Change group Members that were last changed in a group matching the change

group pattern.

Change user id Members that were last changed by the user ID matching the

change user ID pattern.

Language Members whose language matches the language pattern.

Data type Specify the following:

Account To report exclusively on accounting information.

Build Map To report exclusively on build map information.

Both To report on build map and accounting

information.
Data type defaults to Account if nothing is specified.

First occurrence only If you select this and use more than one group pattern, a

precedence system determines which members are selected.

The group1 pattern takes precedence over the group2 pattern,

which takes precedence over the group3 pattern, and so on. If

SCLM finds versions of a member in groups matching more than

one pattern, it selects only the version at the group with the most

precedence. If more than one version of the member matches the

pattern with the most precedence, it selects all of those versions.

If you do not select this field, SCLM selects all versions of all

members.

Hierarchy search information

These fields allow you to use architecture definition criteria to select members. The

architecture definition fields identify subapplications or software components.

To guarantee correct data, use the build function to update the architecture in the

Architecture Control field. If you specify an architecture that has never been built,

none of the members is selected. If you specify an architecture that has been built

but is out of date, the resulting data is inaccurate. Promote the architecture in

report-only mode to see which components are out of date. Patterns are not valid

for architecture definition fields.

Database Contents Utility

182 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Architecture Control Specify the following:

In To select members controlled by the architecture

definition.

Out To select members not controlled by the

architecture definition.

Not used To indicate that an architecture definition is not

used to identify selected members.

Architecture Group The group identifying the lowest group in the hierarchy where

SCLM should find the architecture definition.

Architecture Type The type containing the architecture definition that controls the

selected members.

Architecture Member The member containing the architecture definition that controls the

selected members.

Scope Specify the following architecture scope:

Normal To select members that do or do not have

compilation unit dependencies.

Subunit To select members that do have compilation unit

dependencies.

Extended To select members that do have compilation unit

dependencies.

The database contents report contains a list of all members that you select from the

selection criteria. If you request tailored output, SCLM generates the data set from

this list of accounting and build map information.

Figure 68 shows an example of a database contents utility report that SCLM

generates when you enter NONE in the Tailored Output field on the SCLM Database

Contents Utility panel.

Figure 68. Database Contents Utility Report (Part 1 of 2)

Database Contents Utility

Chapter 9. Using SCLM Functions 183

Note: An asterisk (*) next to the group name on a report indicates that the

member represents build map information.

Tailored Output

If you want to tailor the database contents output, select Terminal, Printer, or

Dataset in the Tailored Output field on the Database Contents Utility panel. The

Customization Parameters panel appears, shown in Figure 69, which you use to

generate the tailored output.

 The fields on the Customization Parameters panel are:

 Report name The title of the report in the tailored output. The maximum length

is 35 characters. Do not use commas in this field. The default value

for Report name is STATISTICS REPORT.

Figure 68. Database Contents Utility Report (Part 2 of 2)

Menu

SCLM Database Contents - Customization Parameters

Report name STATISTI
Report line format . . . @@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBL
MTLS @@FLMCMS @@FLMNCS

Enter "/" to select option
/ Page headers
/ Show totals

Command ===> __
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 69. SCLM Database Contents - Customization Parameters (FLMRCT)

Database Contents Utility

184 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Report line format The format of a line of data in the tailored output. The line format

can be up to 160 characters long.

Report line format has a default value, which is used when no

values are specified:

@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS

@@FLMCMS @@FLMNCS

If you use SCLM variables with data lengths greater than 8

characters, place these variables at the end of the report line to

ensure that the columns in the report line up evenly.

You can use any string or character as a literal. When you use

literals, the string prints once on each output line.

The report line has a maximum size of 2048 characters. The tailored

output prints 80 characters per line. This can produce multiple

80-character lines for one report line.

Press Enter to confirm these requests or enter END to cancel them.

Page headers Select “Page headers” to include page and column header

information in the tailored output. If you want to output a page

header, input parameter information appears in the tailored output.

You can also specify a title. Data is positioned in column 2 of the

tailored output. Column 1 is used for carriage returns.

If you do not select “Page headers”, page headers and carriage

returns are suppressed. The data is positioned in column 1 of the

tailored output.

The default value for “Page headers” is that they are selected.

Show totals Select this to total the numeric data fields and show the totals in the

tailored output. SCLM outputs a summary line at the end of the

output that totals the values of the numeric fields in the output. The

output also includes a count of the number of members reported.

The default value for “Show totals” is that they are selected.

Figure 70 shows an example of a tailored output. The title of the report is Sample

Report. The report line format, specified as @@FLMPRJ @@FLMGRP @@FLMTYP

@@FLMMBR, causes the utility to generate output consisting of the members reported

in the database contents report and their associated included members.

Tailored Output Examples

The tailored output that appears in Figure 70 on page 186 is a formatted

representation of the accounting and build map information of the members that

matched the selection criteria. The tailored output format specification consists of

SCLM variables and constant values. The tailored output displays the SCLM

variables as headers over the lines of variable values.

The z/OS ISPF Software Configuration and Library Manager Reference provides a list of

SCLM variables that can be used in the database contents utility.

Database Contents Utility

Chapter 9. Using SCLM Functions 185

The tailored output examples in figures 71 through 74 show examples of change

code, accounting statistics, source listing, and cleanup reports.

Change Code Report: The report name is CHANGE CODE REPORT.

The report line format input for this example is: @@FLMGRP @@FLMTYP @@FLMMBR

@@FLM$CD @@FLM$CC. The page headers appear on all pages of the report. Totals do

not appear. Figure 71 on page 187 shows the tailored output.

Figure 70. Database Contents Utility Tailored Output

Database Contents Utility

186 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Accounting Statistics Report: The report name is ACCOUNTING STATISTICS

REPORT.

The report line format input for this example is: @@FLMMBR @@FLMLAN @@FLMTLL

@@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS.

The page headers appear on all pages of the report. Totals appear for all numeric

data. Figure 72 shows the tailored output.

Source Listing Report: This example shows a generated script data set that the

SCRIPT/VS processor can process.

The report line format input for this example is: .IM @@FLMMBR.

The report does not have page headers, totals, or a name. Figure 73 shows the

tailored output.

Figure 71. Change Code Report, Page 2

Figure 72. Accounting Statistics Report, Page 2

Figure 73. Source Listing Report

Database Contents Utility

Chapter 9. Using SCLM Functions 187

Cleanup Report: The cleanup data set is a command data set that can be passed

as input to the SCLM command processor. See z/OS ISPF Software Configuration and

Library Manager Reference for more information on the SCLM command processor.

The report line format input for this example is:

DELETE,@@FLMPRJ,@@FLMALT,@@FLMGRP,@@FLMTYP,@@FLMMBR.

The report does not have page headers, totals, or a name. Figure 74 shows the

sample tailored output.

Architecture Report Utility

The architecture report provides listings of all the components in a given

application. The report generator examines the requested architecture and all of its

references, and then constructs a formatted report. The report lists software

components in each type referenced by the architecture. One advantage of the

report is that it helps you to eliminate unnecessary code. The title page of the

report identifies the date and time SCLM generated the report, names the

architecture member you requested, and is based on the report cutoff you select. It

also identifies any alternate project definition used.

The report is divided into two sections:

v Architecture

Lists all architecture and source members subordinate to a given architecture to

the report cutoff you specify. The architecture information is particularly useful

during the development stages of a project to identify the current status of the

application architecture. It is also useful at any time to determine a list of the

software components of an application.

The report uses an indentation format to present a visual concept of the

structure of the application. It also lists the number architecture types processed.

v Cross-reference

Lists all the members, by type, that are referenced by members in the first part

of the report. Use this information to determine the origin of a member.

Figure 76 on page 191 shows an example of an architecture report.

SCLM displays the panel in Figure 75 on page 189 when you select Option 5,

Architecture Report, on the Utilities panel.

Note: Compilation unit dependencies are not used to generate the architecture

report.

The architecture report is divided into three parts: a header, architecture

information, and cross-reference information. The architecture report header lists

the accounting and architecture selection criteria plus the customization parameters

you specify. The architecture information lists all of the software components, by

type, in a specified application. This part of the report can help you eliminate

Figure 74. Cleanup Report

Database Contents Utility

188 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

unnecessary code. The cross-reference information indicates where a given

software component is embedded in the architecture of the application.

 The fields on the SCLM Architecture Report Utility - Entry panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition.

Group The group used to identify the lowest group in the hierarchy where

the architecture begins.

Type The type containing the architecture definition that controls the

selected member.

Member The member containing the architecture definition.

Menu SCLM Utilities Jobcard Help
--

SCLM Architecture Report Utility - Entry Panel

Report input:
Project . : PROJ1 Alternate - INT
Group . . . USERID
Type Report
Member . . . Cutoff . . 6 1. HL

2. LEC
3. CC
4. Generic
5. Top Source
6. None

Output control:
Ex Sub Process . . 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer

3. Dataset Printer . .
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 75. SCLM Architecture Report (FLMRA#P)

Architecture Report Utility

Chapter 9. Using SCLM Functions 189

Report Cutoff You must specify one of the following report cutoff values (which

determine the depth of the report):

HL (High-level)

To list only the HL architecture members in the application

represented by the architecture member you specified in the

Member field.

LEC (Linkedit control)

To list all of the HL and LEC architecture members in the

application represented by the architecture member you

specified in the Member field.

CC (Compilation control)

To list all of the HL, LEC, CC, Generic, and INCLD’ed

members in the application represented by the architecture

member you specified in the Member field.

GEN (Generic)

To list all of the HL and generic architecture members in the

application represented by the architecture member you

specified in the Member field.

Top Source

To list all of the HL, LEC, CC, Generic, and INCL’ed members

and the top source members in the application represented by

the member you specified in the Member field.

None

To list all HL, LEC, CC, and generic architecture members in

each of the types and all source member names down to the

lowest include group in the application represented by the

architecture member you specified in the Member field.
The default value for Report Cutoff is None.

Output control Specify the destination for messages and report when they are

executed (Ex) or submitted (Sub), by entering the corresponding

destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4

for None.

Process You can call the processing part of the architecture report utility

from the interactive or batch environment by selecting Execute or

Submit, respectively. If you request batch processing by selecting

Submit, you must specify the job statement information that is used

in the JCL generated for batch processing.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Architecture Report Example

Figure 76 on page 191 shows an example of the architecture report with a report

cutoff of NONE. Figure 77 on page 194 shows an example of the architecture

report with a report cutoff of LEC.

The architecture report provides lists of all the components in an application. The

title page identifies the date and time the report was generated, the architecture

member requested, and the report cutoff. It also identifies the alternate project

definition, if specified.

Architecture Report Utility

190 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

**

**

** **

** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **

** **

** ARCHITECTURE REPORT **

** **

** 2000/01/06 00:01:30 **

** **

** **

** **

** PROJECT: PROJ1 **

** GROUP: DEV1 **

** TYPE: ARCHDEF **

** MEMBER: FLM01SB2 **

** CUTOFF: NONE **

** **

** **

**

**

==

* *

* ARCHITECTURE REPORT *

* *

* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *

* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT *

* *

==

CODE: H MEMBER: FLM01SB2

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---

H FLM01SB2 ARCHDEF

L FLM01LD4 ARCHDEF

D FLM01MD4 SOURCE

T FLM01MD4 SOURCE

I FLM01EQU SOURCE

D FLM01MD6 SOURCE

T FLM01MD6 SOURCE

I FLM01EQU SOURCE

D FLM01MD5 SOURCE

T FLM01MD5 SOURCE

I FLM01EQU SOURCE

L FLM01LD3 ARCHDEF

D FLM01MD3 SOURCE

T FLM01MD3 SOURCE

I FLM01EQU SOURCE

D FLM01MD6 SOURCE

T FLM01MD6 SOURCE

I FLM01EQU SOURCE

D FLM01MD5 SOURCE

T FLM01MD5 SOURCE

I FLM01EQU SOURCE

NUMBER OF HIGH LEVEL MEMBERS PROCESSED = 1

NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2

NUMBER OF GENERIC MEMBERS PROCESSED = 0

Figure 76. Architecture report with cutoff of NONE (Part 1 of 3)

Architecture Report Utility

Chapter 9. Using SCLM Functions 191

NUMBER OF DEFAULT MEMBERS PROCESSED = 4

NUMBER OF COMPILATION CONTROL MEMBERS PROCESSED = 0

NUMBER OF TOP MEMBERS PROCESSED = 4

NUMBER OF INCLUDED MEMBERS PROCESSED = 1

NUMBER OF ERROR MEMBERS FOUND = 0

==

* *

* CROSS REFERENCE FOR TYPE: SOURCLST *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01MD3 FLM01MD3 SOURCE LIST

FLM01MD4 FLM01MD4 SOURCE LIST

FLM01MD5 FLM01MD5 SOURCE LIST

FLM01MD6 FLM01MD6 SOURCE LIST

TOTAL MEMBERS PROCESSED FOR TYPE = 4

==

* *

* CROSS REFERENCE FOR TYPE: OBJ *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01MD3 FLM01MD3 SOURCE OBJ

FLM01MD4 FLM01MD4 SOURCE OBJ

FLM01MD5 FLM01MD5 SOURCE OBJ

FLM01MD6 FLM01MD6 SOURCE OBJ

TOTAL MEMBERS PROCESSED FOR TYPE = 4

==

* *

* CROSS REFERENCE FOR TYPE: SOURCE *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01EQU FLM01MD4 SOURCE I1

 FLM01MD4 SOURCE

 FLM01MD3 SOURCE I1

 FLM01MD3 SOURCE

 FLM01MD6 SOURCE I1

 FLM01MD6 SOURCE

 FLM01MD5 SOURCE I1

 FLM01MD5 SOURCE

FLM01MD3 FLM01MD3 SOURCE SINC

 FLM01MD3 SOURCE PROM

 FLM01LD3 ARCHDEF INCLD

FLM01MD4 FLM01MD4 SOURCE SINC

Figure 76. Architecture report with cutoff of NONE (Part 2 of 3)

Architecture Report Utility

192 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

FLM01MD4 SOURCE PROM

 FLM01LD4 ARCHDEF INCLD

FLM01MD5 FLM01MD5 SOURCE SINC

 FLM01MD5 SOURCE PROM

 FLM01LD4 ARCHDEF INCLD

 FLM01LD3 ARCHDEF INCLD

FLM01MD6 FLM01MD6 SOURCE SINC

 FLM01MD6 SOURCE PROM

 FLM01LD4 ARCHDEF INCLD

 FLM01LD3 ARCHDEF INCLD

TOTAL MEMBERS PROCESSED FOR TYPE = 22

==

* *

* CROSS REFERENCE FOR TYPE: LMAP *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LMAP

FLM01LD4 FLM01LD4 ARCHDEF LMAP

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==

* *

* CROSS REFERENCE FOR TYPE: LOAD *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

-------- --------------- -------- -------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LOAD

FLM01LD4 FLM01LD4 ARCHDEF LOAD

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==

* *

* CROSS REFERENCE FOR TYPE: ARCHDEF *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01ARH FLM01LD4 ARCHDEF COPY

 FLM01LD3 ARCHDEF COPY

FLM01LD3 FLM01LD3 ARCHDEF PROM

 FLM01SB2 ARCHDEF INCL

FLM01LD4 FLM01LD4 ARCHDEF PROM

 FLM01SB2 ARCHDEF INCL

FLM01SB2 FLM01SB2 ARCHDEF PROM

TOTAL MEMBERS PROCESSED FOR TYPE = 7

Figure 76. Architecture report with cutoff of NONE (Part 3 of 3)

Architecture Report Utility

Chapter 9. Using SCLM Functions 193

**

**

** **

** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **

** **

** ARCHITECTURE REPORT **

** **

** 2000/01/06 00:02:30 **

** **

** **

** **

** PROJECT: PROJ1 **

** GROUP: DEV1 **

** TYPE: ARCHDEF **

** MEMBER: FLM01SB2 **

** CUTOFF: LINK EDIT CONTROL **

** **

** **

**

**

==

* *

* ARCHITECTURE REPORT *

* *

* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR *

* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT *

* *

==

CODE: H MEMBER: FLM01SB2

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---

H FLM01SB2 ARCHDEF

L FLM01LD4 ARCHDEF

L FLM01LD3 ARCHDEF

NUMBER OF HIGH LEVEL MEMBERS PROCESSED = 1

NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2

NUMBER OF ERROR MEMBERS FOUND = 0

==

* *

* CROSS REFERENCE FOR TYPE: SOURCE *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01MD3 FLM01LD3 ARCHDEF INCLD

FLM01MD4 FLM01LD4 ARCHDEF INCLD

FLM01MD5 FLM01LD4 ARCHDEF INCLD

 FLM01LD3 ARCHDEF INCLD

FLM01MD6 FLM01LD4 ARCHDEF INCLD

 FLM01LD3 ARCHDEF INCLD

TOTAL MEMBERS PROCESSED FOR TYPE = 6

Figure 77. Architecture report with cutoff of LEC (Part 1 of 2)

Architecture Report Utility

194 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Export Utility

The export utility writes accounting and cross-reference data to standalone and

portable accounting and cross-reference databases that contain only those records

associated with a specified group. The export utility does not change any data

currently residing in the specified group. The output from the export utility is used

as input to the import utility.

With the export utility, you can capture SCLM accounting information associated

with a specified group. Use the export utility when you want to create a consistent

set of data to archive or transport. You can specify that the exported accounting

information be purged from an existing export VSAM data set.

Export only works on accounting information. Data in project partitioned data sets

is not exported.

==

* *

* CROSS REFERENCE FOR TYPE: LMAP *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LMAP

FLM01LD4 FLM01LD4 ARCHDEF LMAP

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==

* *

* CROSS REFERENCE FOR TYPE: LOAD *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01LD3 FLM01LD3 ARCHDEF LOAD

FLM01LD4 FLM01LD4 ARCHDEF LOAD

TOTAL MEMBERS PROCESSED FOR TYPE = 2

==

* *

* CROSS REFERENCE FOR TYPE: ARCHDEF *

* *

==

MEMBER REF. ARCH. MEM. TYPE KEYWORD INCLUDE-SET

------ --------------- ---- ------- -----------

FLM01ARH FLM01LD4 ARCHDEF COPY

 FLM01LD3 ARCHDEF COPY

FLM01LD3 FLM01LD3 ARCHDEF PROM

 FLM01SB2 ARCHDEF INCL

FLM01LD4 FLM01LD4 ARCHDEF PROM

 FLM01SB2 ARCHDEF INCL

FLM01SB2 FLM01SB2 ARCHDEF PROM

TOTAL MEMBERS PROCESSED FOR TYPE = 7

Figure 77. Architecture report with cutoff of LEC (Part 2 of 2)

Export Utility

Chapter 9. Using SCLM Functions 195

Before using the export utility, verify that the project manager has completed all

the steps required to perform the export setup task. Specifically, export data sets

must be defined and allocated for the group in the project from which the data is

exported.

Figure 78 shows the panel that appears when you select Option 6, Export, from the

Utilities panel.

 To export an SCLM group, enter information for each field. The fields for the

Export Utility - Entry panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition.

Group The group from which you are exporting data.

Replace export data Specify whether to replace the export accounting and cross-reference

data in the export data sets with data from this export. If you do

not select this field and the export data sets contain data, the data is

not replaced, the export is not performed, and an error message is

issued.

Export does not purge data from the project hierarchy primary

accounting and cross-reference data sets.

Output control Specify the destination for messages and reports when they are

executed (Ex) or submitted (Sub) by entering the corresponding

destination number.

Menu SCLM Utilities Jobcard Help
--

SCLM Export Utility - Entry Panel

Selection criteria:
Project . : PROJ1 Alternate - INT
Group . . . USERID

Enter "/" to select option
/ Replace export data

Output control:
Ex Sub Process . . 1 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer

3. Dataset Printer . . _
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 78. SCLM Export Utility (FLMDXE#P)

Export Utility

196 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Process You can call the processing part of the export utility from the

interactive or batch environment by selecting Execute or Submit,

respectively. If you request batch processing by selecting Submit,

you must specify the job statement information that is used in the

JCL generated for batch processing.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Printer Specify the printer output class

Volume Specify the volume on which SCLM should save data sets

Export Report Example

Figure 79 on page 198 shows a sample export report.

The report contains a header indicating that it is an Export Report, which project

definition and group are being exported, and the data set names of the VSAM files

that contain the exported information. The header is followed by three sections:

accounting records, build map records, and intermediate records. The report

always contains a section for each type even if no records of that type were

processed.

The Verify Status field contains the value PASSED unless one of the following is

true:

v The authorization code change field is nonblank for the record

v The accounting type is INITIAL

v The record could not be read

The Completion Status field contains the value PASSED if the record was exported;

otherwise, it contains the value FAILED, which means there was some error

writing the record to the export database. Completion Status should always

contain the value NOT ATTEMPTED if the Verify Status field contains the value

FAILED, because SCLM does not attempt to export a record if the record did not

pass verification.

If the export cross-reference data set is defined for the project definition, the

cross-reference records are also exported; but the export report does not include

them. If the export cross-reference data set is not defined for the project definition,

but the group being exported contains cross-reference records, the Verify Status is

set to FAILED and the Completion Status is set to NOT ATTEMPTED. No

intermediate records are processed.

Export Utility

Chapter 9. Using SCLM Functions 197

 ** **

 ** **

 ** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **

 ** **

 ** EXPORT REPORT **

 ** **

 ** 2002/08/27 11:55:02

 **

 ** **

 ** PROJECT: BTRANS **

 ** ALTERNATE: BTRANS **

 ** GROUP: DEV1 **

 ** **

 ** **

 ** EXPORT ACCOUNTING FILE: BTRANS.EXPORT.ACCOUNT.DATABASE **

 ** EXPORT CROSSREF FILE: **

 ACCOUNTING RECORDS: PAGE: 1

 VERIFY COMPLETION

 TYPE MEMBER STATUS STATUS

 -------- -------- ------ -------------

 ARCHDEF FLM01CMD PASSED PASSED

 ARCHDEF FLM01LD1 PASSED PASSED

 ARCHDEF JTEST02 PASSED PASSED

 ARCHDEF PMR60436 PASSED PASSED

 ARCHDEF P02788A PASSED PASSED

 COPYLIB BCEWCADA PASSED PASSED

 COPYLIB BCEWCHNG PASSED PASSED

 COPYLIB BCEWFLAG PASSED PASSED

 COPYLIB BCEWPMVT PASSED PASSED

 COPYLIB BRSGEC PASSED PASSED

 COPYLIB BRSSECAU PASSED PASSED

 COPYLIB BRSSVDC1 PASSED PASSED

 COPYLIB BRSSVDC2 PASSED PASSED

 COPYLIB BRSSZIC1 PASSED PASSED

 COPYLIB BRSSZIC2 PASSED PASSED

 COPYLIB BRSWINOP PASSED PASSED

 COPYLIB BRSWMTPP PASSED PASSED

 COPYLIB BRSWOLCT PASSED PASSED

 COPYLIB CCOURAN PASSED PASSED

 COPYLIB CPYA0001 PASSED PASSED

 COPYLIB DCACCNTN PASSED PASSED

 COPYLIB ISIWLOCK PASSED PASSED

 COPYLIB ISIWLOG PASSED PASSED

 COPYLIB ISIWMCHG PASSED PASSED

 COPYLIB ISIWMERR PASSED PASSED

 COPYLIB ISIWNCGS PASSED PASSED

 COPYLIB ISIWNUME PASSED PASSED

 COPYLIB ISIWNVAL PASSED PASSED

 COPYLIB ISIWSTAT PASSED PASSED

 COPYLIB ISIWTARI PASSED PASSED

 COPYLIB ISIWVALO PASSED PASSED

 COPYLIB PPMWRM22 PASSED PASSED

 COPYLIB SYSWRACF PASSED PASSED

 COPYLIB TITWPGMJ PASSED PASSED

 LMAP FLM01LD3 PASSED PASSED

 LMAP PMR60436 PASSED PASSED

 LOAD FLM01LD3 PASSED PASSED

 LOAD PMR60436 PASSED PASSED

Figure 79. Export Report (Part 1 of 2)

Export Utility

198 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Import Utility

The import utility reintroduces the exported SCLM accounting information into the

current project after verifying that this data corresponds to the current contents of

the SCLM-controlled data sets.

Before using the import utility, verify that the project manager has completed all

the steps required to perform the import setup task. Specifically, a copy of the

project database from which the items were exported must exist. This means that

the PDS members must have been copied. Export VSAM data sets must be defined

and allocated for the group in the project into which the data will be imported.

Like the SCLM editor, the import utility verifies authorization codes and prohibits

simultaneous updates of members. The group specified to receive the import must

be a development group. The import utility also ensures that all the software

components to be imported are available and have accounting information. Finally,

the import utility verifies that each software component is either new or directly

based on the version that exists in the higher group.

The export database is purged after the import is successfully completed.

 ACCOUNTING RECORDS: PAGE: 2

 VERIFY COMPLETION

 TYPE MEMBER STATUS STATUS

 -------- -------- ------ -------------

 OBJ FLM01MD1 PASSED PASSED

 OBJ FLM01MD3 PASSED PASSED

 OBJ PMR60436 PASSED PASSED

 PNL VRCPT03 PASSED PASSED

 SOURCE CPYRITE PASSED PASSED

 SOURCE DTL2 PASSED PASSED

 SOURCE FLM01MD1 PASSED PASSED

 SOURCE FLM01MD3 PASSED PASSED

 SOURCE FLM01MD6 PASSED PASSED

 SOURCE PMR60436 PASSED PASSED

 SOURCE P02788 PASSED PASSED

 SOURCE VRCPTD1 PASSED PASSED

 SOURCE Z1 PASSED PASSED

 SOURCE Z2L PASSED PASSED

 SOURCE Z300103 PASSED PASSED

 SOURCLST FLM01MD1 PASSED PASSED

 SOURCLST FLM01MD3 PASSED PASSED

 SOURCLST PMR60436 PASSED PASSED

 BUILD MAP RECORDS: PAGE: 3

 VERIFY COMPLETION

 TYPE MEMBER STATUS STATUS

 -------- -------- ------ -------------

 ARCHDEF FLM01CMD PASSED PASSED

 ARCHDEF FLM01LD3 PASSED PASSED

 ARCHDEF PMR60436 PASSED PASSED

 SOURCE DTL2 PASSED PASSED

 SOURCE FLM01MD3 PASSED PASSED

 SOURCE PMR60436 PASSED PASSED

 INTERMEDIATE RECORDS: PAGE: 4

 VERIFY COMPLETION

 CU QUAL CU NAME CU TYPE STATUS STATUS

 ------- ---------------------------- ------- ------ -------------

 ******************** NO RECORDS PROCESSED *************************************

Figure 79. Export Report (Part 2 of 2)

Export Utility

Chapter 9. Using SCLM Functions 199

Figure 80 shows the panel that appears when you select Option 7, Import, from the

Utilities panel:

 To import an SCLM group, enter information in each field. The fields for the

Import Utility - Entry panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition.

Group The development group into which the import is to occur. This

group can be any development group defined in the project

definition.

Authorization code The authorization code to be used for all the suitable members to be

imported. This field defaults to the authorization code of each

member at the time the member is exported. If the authorization

code assigned to a member is not in the group being accessed,

SCLM does not process the member. Authorization codes cannot

contain commas.

Change code Optionally specify a change code to be added to the change code

list of each imported member. Change codes cannot contain

commas. If you do not specify a change code, SCLM uses the

change code at the time the member is exported.

Mode Select one of the following:

Conditional

To stop the import process if there is a verification failure.

Unconditional

To bypass importation of only those elements that would

introduce problems with project integrity.

Report

To perform verification and report generation processing only.

Menu SCLM Utilities Jobcard Help
--

SCLM Import Utility - Entry Panel

Selection criteria:
Project . : PROJ1 Alternate - INT
Group . . . USERID

Member information:
Authorization code . . ________ Mode . . . 1 1. Conditional
Change code ________ 2. Unconditional

3. Report

Output control:
Ex Sub Process . . 2 1. Execute

Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer

3. Dataset Printer . . _
4. None Volume . . ______

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 80. SCLM Import Utility (FLMDXI#P)

Import Utility

200 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Output control Specify the destination for messages and report when they are

executed (Ex) or submitted (Sub), by entering the corresponding

destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4

for None.

Process You can call the processing part of the Import Utility from the

interactive or batch environment by selecting Execute or Submit,

respectively. If you request batch processing by selecting Submit,

you must specify the job statement information which is used in the

JCL generated for batch processing.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Import Report Example

Figure 81 on page 202 is a sample import report.

The report contains a header indicating that it is an Import Report, which project

definition and group are being imported into, and the data set names of the VSAM

files containing the information that is being imported. The header is followed by

three sections: accounting records, build map records, and intermediate records.

The report always contains a section for each type even if no records of that type

were processed.

The Verify Status field contains the value FAILED if any of the verification steps

failed for the member; otherwise, it contains the value PASSED.

The Completion Status field contains the value PASSED if the record was actually

imported; it contains the value FAILED if the import was attempted for a member,

but failed; it contains the value NOT ATTEMPTED if the Verify Status field

contains the value FAILED because no import of a record is attempted if the record

did not pass verification. Certain verification steps will pass only for an

Unconditional import; these cases result in a Verify Status of WARNING and the

Completion Status for such a member depends on the mode of the import.

If an accounting record has cross-reference records and the accounting record

imports successfully, its cross-reference records are also imported. The import

report does not include cross-reference records.

Import Utility

Chapter 9. Using SCLM Functions 201

 ** **

 ** **

 ** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **

 ** **

 ** IMPORT REPORT **

 ** **

 ** 2002/08/27 12:42:17

 **

 ** **

 ** PROJECT: BTRANS **

 ** ALTERNATE: BTRANS **

 ** GROUP: DEV1 **

 ** AUTH. CODE: **

 ** CHANGE CODE: **

 ** MODE: UNCONDITIONAL **

 ** **

 ** EXPORT ACCOUNTING FILE: BTRANS.EXPORT.ACCOUNT.DATABASE **

 ** EXPORT CROSSREF FILE: **

 ACCOUNTING RECORDS: PAGE: 1

 VERIFY COMPLETION

 TYPE MEMBER STATUS STATUS

 -------- -------- ------ -------------

 ARCHDEF FLM01CMD WARNING PASSED

 ARCHDEF FLM01LD1 WARNING PASSED

 ARCHDEF JTEST02 PASSED PASSED

 ARCHDEF PMR60436 PASSED PASSED

 ARCHDEF P02788A PASSED PASSED

 COPYLIB BCEWCADA PASSED PASSED

 COPYLIB BCEWCHNG PASSED PASSED

 COPYLIB BCEWFLAG PASSED PASSED

 COPYLIB BCEWPMVT PASSED PASSED

 COPYLIB BRSGEC PASSED PASSED

 COPYLIB BRSSECAU PASSED PASSED

 COPYLIB BRSSVDC1 PASSED PASSED

 COPYLIB BRSSVDC2 PASSED PASSED

 COPYLIB BRSSZIC1 PASSED PASSED

 COPYLIB BRSSZIC2 PASSED PASSED

 COPYLIB BRSWINOP PASSED PASSED

 COPYLIB BRSWMTPP PASSED PASSED

 COPYLIB BRSWOLCT PASSED PASSED

 COPYLIB CCOURAN PASSED PASSED

 COPYLIB CPYA0001 PASSED PASSED

 COPYLIB DCACCNTN PASSED PASSED

 COPYLIB ISIWLOCK PASSED PASSED

 COPYLIB ISIWLOG PASSED PASSED

 COPYLIB ISIWMCHG PASSED PASSED

 COPYLIB ISIWMERR PASSED PASSED

 COPYLIB ISIWNCGS PASSED PASSED

 COPYLIB ISIWNUME PASSED PASSED

 COPYLIB ISIWNVAL PASSED PASSED

 COPYLIB ISIWSTAT PASSED PASSED

 COPYLIB ISIWTARI PASSED PASSED

 COPYLIB ISIWVALO PASSED PASSED

 COPYLIB PPMWRM22 PASSED PASSED

 COPYLIB SYSWRACF PASSED PASSED

 COPYLIB TITWPGMJ PASSED PASSED

 LMAP FLM01LD3 PASSED PASSED

 LMAP PMR60436 PASSED PASSED

 LOAD FLM01LD3 PASSED PASSED

 LOAD PMR60436 PASSED PASSED

Figure 81. Import Report (Part 1 of 2)

Import Utility

202 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Audit and Version Utility

The audit and version utility enables you to audit SCLM operations on

SCLM-controlled members and create versions of editable members. Using the

audit and version utility, you can view the audit information for a member,

retrieve a version to a sequential data set not controlled by SCLM, to a partitioned

data set not controlled by SCLM, or to a SCLM-controlled development group.

This utility also enables you to delete audit and version information from the

database.

The project manager controls the audit and version capabilities through the use of

macros within the project definition. Audit information is stored in a VSAM data

set, and versions of the SCLM members are stored in one or more partitioned data

sets allocated for this use.

 ACCOUNTING RECORDS: PAGE: 2

 VERIFY COMPLETION

 TYPE MEMBER STATUS STATUS

 -------- -------- ------ -------------

 OBJ FLM01MD1 PASSED PASSED

 OBJ FLM01MD3 PASSED PASSED

 OBJ PMR60436 PASSED PASSED

 PNL VRCPT03 PASSED PASSED

 SOURCE CPYRITE PASSED PASSED

 SOURCE DTL2 PASSED PASSED

 SOURCE FLM01MD1 FAILED NOT ATTEMPTED

 SOURCE FLM01MD3 WARNING PASSED

 SOURCE FLM01MD6 WARNING PASSED

 SOURCE PMR60436 PASSED PASSED

 SOURCE P02788 FAILED NOT ATTEMPTED

 SOURCE VRCPTD1 PASSED PASSED

 SOURCE Z1 PASSED PASSED

 SOURCE Z2L PASSED PASSED

 SOURCE Z300103 PASSED PASSED

 SOURCLST FLM01MD1 PASSED PASSED

 SOURCLST FLM01MD3 FAILED NOT ATTEMPTED

 SOURCLST PMR60436 PASSED PASSED

 BUILD MAP RECORDS: PAGE: 3

 VERIFY COMPLETION

 TYPE MEMBER STATUS STATUS

 -------- -------- ------ -------------

 ARCHDEF FLM01CMD PASSED PASSED

 ARCHDEF FLM01LD3 PASSED PASSED

 ARCHDEF PMR60436 PASSED PASSED

 SOURCE DTL2 PASSED PASSED

 SOURCE FLM01MD3 PASSED PASSED

 SOURCE PMR60436 PASSED PASSED

 INTERMEDIATE RECORDS: PAGE: 4

 VERIFY COMPLETION

 CU QUAL CU NAME CU TYPE STATUS STATUS

 ------- ---------------------------- ------- ------ -------------

 ********************* NO RECORDS PROCESSED ************************************

Figure 81. Import Report (Part 2 of 2)

Import Utility

Chapter 9. Using SCLM Functions 203

Attention: The data kept in audit VSAM data sets and the versioning partitioned

data sets is for the exclusive use of the audit and version utility. Do not edit or

alter these data sets without using the audit and version utility or the data may be

lost.

Figure 82 shows the panel that appears when you select Option 8, Audit and

Version, from the SCLM Utilities panel.

 The fields on the SCLM Audit and Version Utility - Entry panel are:

 Option “Versioning and Audit Tracking:” shows all audited actions for the

selected members and date range.

“Versioning only:” shows only those entries that have version data

associated with them. Includes records for attempts and failures that

would otherwise have version data.

Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition.

Group The group for which you want audit and versioning information.

The specified group must have an audit VSAM data set defined in

the project definition. It must also be defined on an FLMATVER

macro in the project definition. If the Hierarchy option is selected,

this field will be used to determine the group hierarchy to be

searched and the results will include records from the current group

and all parent groups.

Type Specify up to four types of member for which you want the version

and audit information displayed or retrieved. The types must be

defined on an FLMATVER macro in the project definition.

 Menu SCLM Utilities Help

 ──

 SCLM Audit and Version Utility - Entry Panel

 Option . . 1 1. Versioning and Audit Tracking

 2. Versioning only

 SCLM Library:

 Project . : SLMTEST7

 Group . . . JPHILP

 Type

 Member . . . (Member name or blank for member list)

 Selection date range:

 Date from . . (Blank or start date for member list)

 Date to . . . (Blank or end date for member list)

 Enter "/" to select option

 Hierarchy view

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 82. SCLM Audit and Version Utility (FLMVUS#P)

Audit and Version Utility

204 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Member The member for which you are requesting information. If you leave

this field and the Command field blank, SCLM displays the SCLM

Version Selection panel. The Member field is optional. A trailing *

may be entered in this field to request a selection list according to a

pattern match.

Date from The starting date of the range of dates to search for the specified

member. The date must be in the form YYYY/MM/DD. If you

specify a member and leave this field blank, SCLM searches from

the beginning of the file to the TO date. If you specify a member

and leave the “Date from” and “Date to” fields blank, all versions

of the member appear.

SCLM verifies that the date you enter is valid and not greater than

today’s date. The “Date from” field is optional.

Date to The ending date of the range of dates to search for the specified

member. The date must be in the form YYYY/MM/DD. If you

specify a member and leave this field blank, SCLM uses the current

date as the end date for the search. If you leave the “Date from”

and “Date to” fields blank, all versions of the member appear.

SCLM verifies that the date you enter is valid and greater than or

equal to the “Date from” value. The “Date to” field is optional.

Hierarchy view When this option is selected, SCLM searches for audit/versioning

records for the current group and for all groups above it in the

hierarchy. The current group is determined by the value in the

Group field on this panel.

SCLM Version Selection

Using the SCLM Version Selection panel (FLMVSL#P), you can view the audit

information and associated accounting information for that version of the member,

compare versions of a member or compare the member version with an external

data set, delete a version of a member, view the editing history of a version,

retrieve a version of a member or view the current contents of a version.

To display the SCLM Version Selection panel, do the following from the SCLM

Audit and Version Utility Entry panel:

1. Select “Versioning and Audit Tracking” or “Versioning Only” in the option

field.

2. Enter the group name in the Group field.

3. If desired, enter the Type, Member, Date from and Date to information in the

appropriate fields.

4. If desired, select the hierarchy option.

5. Press Enter.

The SCLM Version Selection panel (see Figure 83 on page 206) displays the list

of results.

Audit and Version Utility

Chapter 9. Using SCLM Functions 205

Use the SCROLL commands or the LOCATE command to scroll the list.

The fields for the Version Selection panel, shown in Figure 83, are:

 Member The names of the members matching the selection criteria on the

SCLM Audit and Version Utility - Entry panel that have audit and

version information.

Group The name of the group you specified on the SCLM Audit and

Version Utility - Entry panel.

Type The types of the members matching the selection criteria on the

SCLM Audit and Version Utility - Entry panel.

Action Reason The action that was performed against the specified member. Valid

values include:

v BUILD

v BLDDEL

v DELETE

v EXT LIB

v FREE

v IMPORT

v LOCK

v PROMOTE

v STORE

v UNLOCK

v UPTATHCD (update authorization code)

v UPTCHGCD (update change code)

v UPTUENTY (update user entry)

Action Date The date the action listed in the Action Reason field occurred.

Action Time The time the action listed in the Action Reason field occurred.

Userid The user ID of the person who performed the action.

 Menu SCLM Utilities Help

 ──

 SCLM - Version Selection Row 1 to 8 of 82

 Project . . . : SLMTEST7

 Line Commands: A Audit Info C Compare D Delete X External Compare

 H History R Retrieve V View

 Action Action Action

 S Member Group Type Reason Date Time Userid V Status

 - -------- -------- -------- -------- ---------- -------- -------- - --------

 JJMSCPR DEVELOP ASM PROMOTE 2002/08/02 16:20:20 JPHILP

 JJMSCPR DEVELOP ASM PROMOTE 2002/08/02 16:19:37 JPHILP #

 JJMSCPR DEVELOP ASM DELETE 2002/08/02 16:17:52 JPHILP

 JJMSCPR DEVELOP ASMLIST PROMOTE 2002/08/02 16:20:20 JPHILP

 JJMSCPR DEVELOP ASMLIST PROMOTE 2002/08/02 16:19:39 JPHILP

 JJMSCPR DEVELOP NCAL PROMOTE 2002/08/02 16:20:21 JPHILP

 JJMSCPR DEVELOP NCAL PROMOTE 2002/08/02 16:19:39 JPHILP

 JJMSCPR DEVELOP OBJ PROMOTE 2002/08/02 16:20:21 JPHILP

 Option ===> Scroll ===> PAGE

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 83. SCLM Version Selection Panel (FLMVSL#P)

Audit and Version Utility

206 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

V Indicates, using a hash symbol (#), whether a version of the

member exists.

Status Indicates the status of the line command. Possible values are:

v *SELECT

v *DELETED

v *FAILED

v *ERROR

v RETRVOLD

v RETRVNEW

To the left of each member listed is a space for entering a line command. You can

enter multiple commands on the panel as long as the commands do not conflict.

All requests are handled in succession unless an error occurs. If an error occurs,

the selection list indicating the error reappears. You must correct the error before

further processing can occur.

The available line commands are as follows:

A Display the audit information for the member.

 When you enter the A line command beside a member name, the SCLM

Audit/Version Record panel appears, as shown in Figure 86 on page 209,

giving you the information recorded for that member. From here, you can

display the accounting information.

C Display the version in the SCLM Audit and Version Utility - Compare panel.

 When you enter the C line command beside a member version, SCLM displays

the selected version information in the SCLM Audit and Version Utility -

Compare panel, along with a subset of versions (not audit records) from the

initial version selection results, where the Type and Member are the same. For

more information, see “SCLM Version Compare” on page 210.

 The C command can only be entered for member versions (not audit records).

D Delete the audit record in the VSAM audit data set and delete the versioned

member in the partitioned data set.

 When you enter the D line command beside a member name, SCLM deletes

the audit record and the corresponding versioned member, if one exists. The

Status field displays the word ″Deleted″, indicating that the operation

completed successfully.

X Display the version in the SCLM Audit and Version Utility - External Compare

panel.

 When you enter the X line command beside a member version, SCLM displays

the selected version information in the SCLM Audit and Version Utility -

External Compare panel, in which you can specify the external data set to be

used in the comparison. For more information, see “External Compare” on

page 212.

H Display the history of editing changes made between the selected version and

the current version. The Key column indicates whether each line has changed

and if so, in which version.

Audit and Version Utility

Chapter 9. Using SCLM Functions 207

The H command can only be entered for member versions (not audit records).

R Display the version in the SCLM Audit and Version Utility - Retrieve panel.

 When you enter the R line command beside a member version, SCLM displays

the selected version information in the SCLM Audit and Version Utility -

Retrieve panel, in which you can specify the data set into which the version

will be retrieved.

 The R command can only be entered for member versions (not audit records).

For more information, see “Retrieve” on page 213.

V Display the current contents of the selected member version, using the SCLM

VERRECOV service.

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 ───

 VIEW SYS02225.T133058.RA000.USERID.VHIST.H01 Columns 00001 00072

 ****** ***************************** Top of Data ******************************

 ==MSG> -Warning- The UNDO command is not available until you change

 ==MSG> your edit profile using the command RECOVERY ON.

 000001 Version History

 000002 Changes since, but not including Version 2

 000003

 000004 CURRENT 0 02/04/17 12:49:34.19 JPHILP

 000005 VERSION 1 02/04/12 12:32:59.49 JPHILP

 000006 VERSION 2 02/04/12 11:54:23.25 JPHILP

 000007

 000008 |------Key-----||----------Description----------|

 000009 Ixxxxxx Inserted into Version xxxxxxx

 000010 Dxxxxxx Deleted from Version xxxxxxx

 000011 (blank) Unchanged since current version

 000012

 000013 |-------Key-----|------------------------------------Source-----------

 000014 TITLE ’JJMSCPR - COPYRIGHT CODE

 000015 */04**

 Command ===> Scroll ===> PAGE

 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up

 F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Figure 84. Audit and Version View panel (ISREDDE2) - sample data with history

Audit and Version Utility

208 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The V command can only be entered for member versions (not audit records).

SCLM Audit and Version Record

If you enter ’A’ to display the SCLM Audit and Version record, the SCLM

Audit/Version Record panel shown in Figure 86 appears.

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 ───

 VIEW USERID.VERBROWS.SLV89QK4 Columns 00001 00072

 ****** ***************************** Top of Data ******************************

 ==MSG> -Warning- The UNDO command is not available until you change

 ==MSG> your edit profile using the command RECOVERY ON.

 000001 TITLE ’JJMSCPR - COPYRIGHT CODE ’

 000002 */04***/

 000003 */* */

 000004 */* */

 000005 */* OCO Source Materials */

 000006 */* */

 000007 */* 5696-234 */

 000008 */* */

 000009 */* (C) Copyright IBM Corp. 1992,2000 */

 000010 */* */

 000011 */* The source code for this program is not published or */

 000012 */* otherwise divested of its trade secrets, irrespective of */

 000013 */* what has been deposited with the U.S. Copyright Office. */

 000014 */* */

 000015 */***/

 Command ===> Scroll ===> PAGE

 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up

 F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Figure 85. Audit and Version View panel (ISREDDE2) - sample data

 SCLM - Audit/Version Record

Project . : SLMTEST7

Audit data:

 Group : DEVELOP Calling service . . : PROMOTE

 Type : ASM Action Taken . . . : PUT

 Member : JJMSCPR Action Result . . . : COMPLETE

 Audit Date : 2002/04/12 Fail Message . . . :

 Audit Time : 11:54:23.25

 Userid : JPHILP

 SCLM Change Date . : 2002/04/12

 SCLM Change Time . : 11:53:10

Version data:

 Data Set : SLMTEST7.DEVELOP.ASM.VERSION

 Member : JJMSCPR Request format . . : DELTA

 Change Date . . . : 2002/04/12 Current format . . : DELTA

 Change Time . . . : 11:54:24

Enter "/" to select option;

 Display Accounting Information

Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F12=Cancel

Figure 86. SCLM Audit/Version Record Panel (FLMVBA#P)

Audit and Version Utility

Chapter 9. Using SCLM Functions 209

The fields for the panel shown in Figure 86 on page 209 are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition.

Group The group for which the accounting information appears.

Type The type for which the accounting information appears.

Member The member for which the accounting information appears.

Audit Date The date the audit was performed.

Audit Time The time the audit was performed.

Userid The userid of the person who caused the audit record to be created.

SCLM Change Date The date the member was last edited.

SCLM Change Time The time the member was last edited.

Data Set The name of the PDS where the version data, if any, for this record

is stored. This name is always present, whether or not version data

exists.

Member The name of the member in which version data is stored, if this

record has version data. This field is blank if there is no version

data.

Change Date The date the versioned member was written.

Change Time The time the versioned member was written.

Calling Service The service that SCLM is running at the time; for example, BUILD,

PROMOTE, STORE, LOCK, or DELETE.

Action Taken The function that causes the audit / version to be taken.

For example, EDIT causes a SAVE. EDIT is the calling service and

SAVE is the action taken. The action could be LOCK, DELETE,

MIGRATE, and so on. The calling service and the action taken could

be the same. For example, the BUILD service could cause the

BUILD action to take a version.

Action Result Indicates the status of the action taken.

Fail Message Indicates a failure. This field contains the message number of the

failing message.

If the action result is COMPLETED, you can display the related accounting

information. Enter S to select this option (located at the bottom of the SCLM Audit

/ Version Record panel). See Figure 56 on page 166 for an example of the

Accounting Record panel.

SCLM Version Compare

If you enter ’C’ to select a version to be compared with other member versions, the

SCLM Audit and Version Utility - Compare Panel, shown in Figure 87 on page 211,

is displayed. Information about the selected version is shown in the top section of

the panel. The bottom section of the panel lists all the matching versions of the

member that were included in the initial version selection results. Member versions

are considered matching when the Member and Type fields are the same. If the

Hierarchy View option was selected on the SCLM Audit and Version Utility - Entry

Panel, member versions in different groups appear on this list and can be

compared.

Audit and Version Utility

210 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The fields for the panel shown in Figure 87 are.

 Version Displays the full name of the selected member version.

Version Date The date on which the selected member version was written.

Version Time The time at which the selected member version was written.

Compare Type Specifies the granularity of the comparison, ranging from entire

member to member (File) comparison down to single Byte

differences. Line compare is useful for source data. Word compare

is most useful for text data.

Listing Type Specifies the context scope of the listing report. You can get a listing

with summary information only (OVSUM), single line differences

between files (Delta), differences plus or minus the five unchanged

lines before and after changed lines (CHNG), or a listing that

includes all of the lines in both files (Long).

Sequence numbers Specifies whether sequence numbers in the compared files are to be

ignored or treated as data. Choose SEQ to ignore differences in

standard sequence number columns 72 through 80 for FB LRECL 80

members. Choose NOSEQ to treat all columns in the files as data.

Choose COBOL to ignore differences in columns 1 through 8 of the

data. Choose Blank to cause SuperC to ignore standard sequence

number columns if the data set is FB 80 or VB 255. Otherwise, the

comparison processes these columns as data.

Listing DS Name The data set into which the compare listing is written. You can

preallocate this data set, or let ISPF create one for you. If this data

set is partitioned, you must specify a member name.

To the left of each version listed is a space for entering the S line command. This

command selects the version against which you want to compare the currently

selected member version. You can only select one of the listed versions.

 FLMVSC#P SCLM Audit and Version Utility - Compare Panel Row 1 from 32

 SCLM Library:

 Version . . : SLMTEST7.DEVELOP.ASM(JJMSCPR)

 Version Date : 2002/04/12

 Version Time : 11:54:23

 Sequence

 Compare Type Listing Type Numbers

 1 1. File 1 1. Delta 1 1. BLANK

 2. Line 2. CHNG 2. SEQ

 3. Word 3. Long 3. NOSEQ

 4. Byte 4. OVSUM 4. COBOL

 Listing DS Name

 Action Action Action

 S Member Group Type Reason Date Time Userid V

 - -------- -------- -------- -------- ---------- -------- -------- -

 JJMSCPR DEVELOP ASM PROMOTE 2002/06/17 13:56:07 JPHILP #

 JJMSCPR DEVELOP ASM PROMOTE 2002/04/17 12:49:34 JPHILP #

 Command ===> Scroll ===> PAGE

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F12=Cancel

Figure 87. SCLM Audit and Version Utility - Compare Panel (FLMVSC#P)

Audit and Version Utility

Chapter 9. Using SCLM Functions 211

Note: More sophisticated comparisons can be done using the ISPF Option 3.13,

SuperC Compare Utility.

External Compare

If you enter ’X’ to select a version to be compared with an external data set, the

SCLM Audit and Version Utility - External Compare Panel, shown in Figure 88, is

displayed. Information about the selected version is shown in the top section of the

panel.

 The fields for the panel shown in Figure 88 are:

 Version Displays the full name of the selected member version.

Version Date The date on which the selected member version was written.

Version Time The time at which the selected member version was written.

SCLM Group To compare a version against the member store within SCLM, place

a ″/″ against the SCLM Group and specify the group. This will

search for the first occurrence of the selected member in the

hierarchy starting at this group.

ISPF Data Set To compare a version against an ISPF data set place a ″/″ against

the ISPF Data Set and specify the data set name. This will search for

the first occurrence of the member in the data set.

Member If you have chosen to compare a version against an ISPF data set,

you can specify the member to be used in the comparison. If this

field is left blank, the first occurrence of the selected member in the

data set will be used.

Compare Type Specifies the granularity of the comparison, ranging from entire

member to member (File) comparison down to single Byte

differences. Line compare is useful for source data. Word compare

is most useful for text data.

 SCLM Audit and Version Utility - External Compare

 SCLM Library:

 Version . . : SLMTEST7.DEVELOP.ASM(JJMSCPR)

 Version Date : 2002/04/12

 Version Time : 11:54:23

 Compare Version with:

 SCLM Group . .

 ISPF Data Set

 Member

 Sequence

 Compare Type Listing Type Numbers

 1 1. File 1 1. Delta 1 1. BLANK

 2. Line 2. CHNG 2. SEQ

 3. Word 3. Long 3. NOSEQ

 4. Byte 4. OVSUM 4. COBOL

 Listing DS Name

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F12=Cancel

Figure 88. SCLM Audit and Version Utility - External Compare Panel (FLMVSX#P)

Audit and Version Utility

212 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Listing Type Specifies the context scope of the listing report. You can get a listing

with summary information only (OVSUM), single line differences

between files (Delta), differences plus or minus the five unchanged

lines before and after changed lines (CHNG), or a listing that

includes all of the lines in both files (Long).

Sequence numbers Specifies whether sequence numbers in the compared files are to be

ignored or treated as data. Choosing SEQ means to ignore

differences in standard sequence number columns 72 through 80 for

FB LRECL 80 members. Choosing NOSEQ means to treat all

columns in the files as data. The COBOL selection means to ignore

differences in columns 1 through 8 of the data. Choosing Blank

causes SuperC to ignore standard sequence number columns if the

data set is FB 80 or VB 255. Otherwise, the comparison processes

those columns as data.

Listing DS Name The data set into which the compare listing is written. You can

preallocate this data set, or let ISPF create one for you. If this data

set is partitioned, you must specify a member name.

Note: The SCLM Group and ISPF Data Set options are mutually exclusive, that is,

you can only choose one of these options. If a ″/″ is placed in both options,

a message will state that the ISPF Data Set option is invalid.

Retrieve

If you enter ’R’ to select a version to be retrieved, the SCLM Audit and Version

Utility - Retrieve Panel, shown in Figure 89, is displayed. Information about the

selected version is shown in the top section of the panel.

 The fields for the panel shown in Figure 88 on page 212 are:

 Version Displays the full name of the selected member version.

Version Date The date on which the selected member version was written.

 Menu SCLM Utilities Help

 ──

 FLMVSR#P SCLM Audit and Version Utility - Retrieve Panel

 SCLM Library:

 Version . . : SLMTEST7.DEVELOP.ASM(JJMSCPR)

 Version Date : 2002/04/12

 Version Time : 11:54:23

 SCLM retrieve group and type:

 To Group . . . Authorization code . .

 To Type . . . (Defaults to auth code from audited member)

 Other Data set:

 Data Set Name

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 89. SCLM Audit and Version Utility - Retrieve Panel (FLMVSR#P)

Audit and Version Utility

Chapter 9. Using SCLM Functions 213

Version Time The time at which the selected member version was written.

To Group The SCLM Group into which the version is to be retrieved.

To Type The SCLM Type into which the version is to be retrieved.

Auth Code The Authorization code used in the retrieval process. If left blank,

this defaults to the Authorization code from the selected member

version.

Data Set Name The ISPF data set into which the version is to be retrieved. If the

data set is a PDS, a member must be specified.

Note: If a data set name is specified in this field, the To Group and

To Name fields are ignored.

When you retrieve more than one member into a sequential data set, each member

after the first is copied over the previous member. To retrieve more than one

member to a sequential data set, copy the first member to another data set before

retrieving a second member. We recommend that you use a partitioned data set if

you intend to copy more than one member.

SCLM will not allow you to retrieve a second version of the same member but you

can retrieve a version of a different member. To retrieve a second version of the

same member you must first return to the SCLM Audit and Version Utility Entry

panel and then come back to the SCLM Version Selection panel.

Note: When you retrieve the most recent version of a source member into a

development group of the hierarchy, the accounting data and ISPF statistics

match those of the member that is already in the hierarchy. Therefore,

outputs are not produced when the member is built because the outputs

that are already in the library are current.

In addition, when the recovered member is promoted to the level where the

member resides, the existing member is not overwritten. If the content of the

existing member has been corrupted and it is important to replace that

member, you must save the member in the hierarchy after it is recovered.

You can save the member using SCLM edit, migrate in forced mode, or the

SAVE service.

Delete from Group Utility

You can use the Delete from Group utility to delete database components

associated with a specified group. You can delete a member or members and all

associated SCLM accounting information, including accounting records, build map

records, cross-reference records, and intermediate records. You can further specify

whether you want everything deleted, only build outputs, only accounting

information and build map records, or only build map records. You can also

specify that nothing actually be deleted but a deletion report be generated.

The Delete from Group utility does not delete members that have no accounting

information.

Figure 90 on page 215 shows the panel that is displayed when you select Option 9,

Delete from Group, from the Utilities panel.

Audit and Version Utility

214 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

|

To delete information from an SCLM group, you must enter information for each

field. The fields for the Delete from Group Utility - Entry panel are:

 Project The project specified on the SCLM Main Menu. This field is display

only. An Alternate field also appears if you specified an alternate

project definition.

Group The group for which information is to be deleted. Delete from

Group only works on groups defined to the project. This field is

required. There are no default values.

Type The type from which information is to be deleted. You can use

patterns for the type you want processed. See “Specifying Selection

Criteria” on page 180 for details. Delete from Group only works on

types defined to the project.

Member The name or pattern of the members and SCLM information to be

deleted. Only members that have accounting information are

deleted. You can use patterns for the member name. See “Specifying

Selection Criteria” on page 180 for details.

 Menu SCLM Utilities Jobcard Help

 ──

 SCLM Delete from Group Utility - Entry Panel

 Delete from Group Input:

 Project . : PDFTDEV

 Group . . . SBURNF

 Type MSGSRCE (Pattern may be used)

 Member . . . (Pattern may be used)

 Delete Flag . . 1. Build map Delete Mode . . 2 1. Execute

 2. Account 2. Report

 3. Text

 4. Output

 Output control:

 Ex Sub Process 1 1. Execute

 Messages . . 3 3 1. Terminal 2. Submit

 Report . . . 3 3 2. Printer

 Listings . . 3 3 3. Data set Printer H

 4. None Volume

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 90. SCLM Delete from Group Utility (FLMDDG#P)

Delete from Group Utility

Chapter 9. Using SCLM Functions 215

|

|

Delete Flag The indicator of the type of data to be deleted.

Build map

All build map records that match the pattern are deleted.

Account

All accounting records, cross-reference records,

intermediate records, and build map records that match the

pattern are deleted. The accounting type will not be

checked.

Text All accounting records, cross-reference records,

intermediate records, build map records, intermediate code,

and text members that match the pattern are deleted. The

accounting type will not be checked.

Output All build map records, intermediate records and code, and

all non-editable accounting records, their cross-reference

records and associated text members that match the pattern

are deleted. Editable accounting records, their

cross-reference records or associated text members are not

deleted.

Delete Mode The indicator for the action performed by the Delete from Group.

Select one of the following:

Execute

All members that match the selection criteria for the

specified Delete Flag are deleted.

Report No deletion will occur; contents of what would, upon

execution, be deleted for the specified selection criteria and

Delete Flag are reported. Report is always be the default

whenever this panel appears. Even after you execute a

delete from group, the mode is changed to Report.

To delete members, update authority to the hierarchy data sets

containing the members is required, even if the Delete from Group

utility is run in REPORT mode.

Output control Specify the destination for messages and the report when they are

executed (Ex) or submitted (Sub), by entering the corresponding

destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4

for None. A listing data set will not be allocated when the Delete

Mode is Report, even though Dataset is specified for the Listings

field.

Process You can call the processing part of the delete from group utility

from the interactive or batch environment by selecting Execute or

Submit, respectively. If you request batch processing by selecting

Submit, you must specify the job statement information which is

used in the JCL generated for batch processing.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Delete from Group Report Example

Figure 91 on page 218 shows a sample Delete Group report.

The report contains a header indicating that it is a Delete Report, which project

definition and group are specified, the type and member selection criteria, and the

Delete from Group Utility

216 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

|

delete flag and mode. The header is followed by three sections: members, build

maps, and Ada intermediate code. The report always contains all of these sections

even if there is no activity to report for a section. Output members are denoted by

an asterisk (*) at the beginning of the report line.

The VERIFY STATUS field contains the value PASSED unless the delete routine

was unable to verify the record for one of the following reasons:

v User has no update authority

v Member has nonblank access key

v Error reading the record

The COMPLETION STATUS field contains the value PASSED if the member was

actually deleted. The field contains NOT ATTEMPTED if the verification failed or

the delete from group was run in REPORT MODE only. The field contains FAILED

if an error occurred during the execution of the deletion. The field contains

WARNING if the text member or intermediate code did not exist. The accounting

record is still deleted.

Although cross-reference records are deleted, there is no section explicitly for them

in the Delete Group report. If the accounting record is successfully deleted, its

cross-reference records, if any, are also deleted.

The report header indicates that it relates to the Delete from Group utility. The

header also shows which project definition and group are specified, the type and

member selection criteria, and the delete flag and mode.

Delete from Group Utility

Chapter 9. Using SCLM Functions 217

Package Backout Utility

The Package Backout utility enables you to back up and recover non-editable

types, using a backup group controlled within SCLM. The backout process restores

an executable environment by promoting the previously backed up modules from

the backup group. Source members are recoverable through versioning, using

SCLM services and administration procedures external to the Package Backout

processes.

**

**

** **

** **

** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **

** **

** DELETE GROUP REPORT **

** **

** 2000/03/26 13:30:39 **

** **

** PROJECT: PROJ1 **

** ALTERNATE: PROJ1 **

** GROUP: USER1 **

** TYPE: * **

** MEMBER: * **

** FLAG: TEXT **

** MODE: REPORT **

**

**

 MEMBERS: PAGE 1

 VERIFY COMPLETION

 GROUP TYPE MEMBER STATUS STATUS

 -------- ------ ------- ------ ----------

 USER1 SOURCE ASM1 PASSED NOT ATTEMPTED

 USER1 SOURCE ASM2 PASSED NOT ATTEMPTED

 USER1 SOURCE PASMAIN PASSED NOT ATTEMPTED

 *USER1 LISTING PASMAIN PASSED NOT ATTEMPTED

 *USER1 LMAP PASMAIN PASSED NOT ATTEMPTED

 *USER1 LOAD PASMAIN PASSED NOT ATTEMPTED

 *USER1 OBJ PASMAIN PASSED NOT ATTEMPTED

 USER1 SOURCE PASCPGM PASSED NOT ATTEMPTED

 USER1 SOURCE PSCINCL1 PASSED NOT ATTEMPTED

 USER1 SOURCE PSCINCL2 PASSED NOT ATTEMPTED

 USER1 SOURCE PSCINCL3 PASSED NOT ATTEMPTED

 USER1 SOURCE SCRIPTHL PASSED NOT ATTEMPTED

 USER1 SOURCE SCRIPT1 PASSED NOT ATTEMPTED

 BUILD MAPS: PAGE: 2

 VERIFY COMPLETION

 GROUP TYPE MEMBER STATUS STATUS

 -------- ------ ------- ------ ----------

 USER1 SOURCE PASCMAIN PASSED NOT ATTEMPTED

 ADA INTERMEDIATE CODE: PAGE: 3

 VERIFY COMPLETION

 GROUP CU QUAL CU NAME CU TYPE STATUS STATUS

-------- -------- ------------- ------- ------ -----------

********************* NO RECORDS PROCESSED *********************

Figure 91. Delete Group Report

Package Backout Utility

218 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The term “package” refers to an SCLM architecture member that is used during

the build and promote processes within SCLM. This architecture member defines

the modules/ARCHDEF members that are promoted using include or change code

parameters.

The libraries that contain packages are determined by using the ISAPACK=Y flag

on the FLMTYPE macro within the project definition. If an architecture member is

promoted from a library which does not have an ISAPACK=Y flag then the

package backout process will not be invoked and no modules will be backed up.

To recover source or editable types, you must implement versioning at the group

being targeted for package backout.

During package backout, the Copy phase of the promote process is triggered, to

allow DB2 BINDs to be performed against any recovered DBRMs, and the Purge

phase is triggered to delete the backed-up modules. Promote copy and purge exit

processing is also invoked during the package backout process. This ensures the

integrity of backed out load modules and ensures that any other exit processing

that is in place during a normal copy or purge promote process is maintained.

Package Backout involves two phases: Backup and Restore.

The backup phase occurs during a Promote process (see Figure 92 on page 220).

For each member of a package marked for backout, it:

1. Copies the old members to the existing backup data set.

2. Saves the package details into the Package Details file.

3. Allows the promote to continue.

The restore phase occurs when requested by the user (see Figure 93 on page 221).

Restore promotes the old members back to the original group.

Package backout enables users to quickly restore an executable environment. The

backout process restores the previously backed up package modules through the

promote process from the backup group.

Once the immediate problem has been resolved in the executable environment, the

user must apply the changes to the source using the normal development process.

Use version retrieval to retrieve the version of the source corresponding to the

backed out member into a development group for editing, or make the change in

the existing copy of the member in the hierarchy.

The Package Details file holds the date and time details of both the backed up

members and the editable members in the package, so these can be used as input

to determine the appropriate versions to be recovered.

A package has the status of ″BACKEDUP″ when it is initially backed up, and

″RESTORED″ after a package-level restore is performed.

A similar status is retained against the backed-up member, showing either

″BACKEDUP″, or ″RESTORED″ if it is restored using a member-level restore.

To be able to recover source parts using Package Backout, versioning must be

implemented for any editable types (such as source) that are promoted to a level at

which Package Backout has been implemented.

Package Backout Utility

Chapter 9. Using SCLM Functions 219

Note: Package Backout cannot control backout of editable types.

Backup phase

Figure 92 shows the backup phase.

 Package details are maintained as members of the Package Details file PDS. This

PDS needs to be defined by the SCLM Administrator.

The SCLM type for this PDS is nominated using the FLMTYPE macro, for example:

BACKUP FLMTYPE PACKFILE=Y

These PDS members hold the package backout information, such as:

v Package status

v Group

v Type

v Member

v Old member timestamp

v New member timestamp

v Timestamp when backed out

v Member status

v Member-level selection flag

Accounting records of the non-editable types are not saved back to the backup

level, nor restored to the higher group.

Any subsequent package promotion that involves the same type/member

invalidates the ability of the member from the original package to be restored, and

causes the member to be overwritten in the backup data set. The member cannot

 1. Save

┌────────────┐ ───────────�

│ │

│ Prod ├──────────────────────┐

│ │ │

└──────┬─────┘ ┌─────┴──────┐

 │ │ │

 │ � │ Backup │

 │ │ 3. Promote │ │

 │ │ └────────────┘

 │

┌──────┴─────┐ 2. Package details file updated

│ │

│ Pre-Prod │

│ │

└──────┬─────┘

 │

 │

 │

┌──────┴─────┐

│ │

│ Test │

│ │

└──────┬─────┘

 │

 /

 /

Figure 92. Package Backout—Backup Phase

Package Backout Utility

220 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

be restored, because the physical timestamp of the member differs from the

timestamp in the Package Details file. The Package Backout routines check

timestamps dynamically, to ascertain if the member is still eligible for restore

processing.

A promote that involves a package that can be backed out can be restarted. If it is,

the package members being backed up are simply recopied during the restarted

promote.

Specifying the parameter REUSEDAY=nnnn forces SCLM to check the package

date in the Package Details File for the package being promoted. If this package is

not younger than the REUSEDAY value, then the package details member is

deleted. If it is younger than the value then SCLM reuses the package. With

Package reuse, if the module is being promoted again it overwrites the older

backed up version of that module.

Restore phase

Figure 93 shows the restore phase.

 The restore is limited to non-editable types. The details of all members, both

editable and non-editable, are recorded in the Package Details file.

After recovery of the non-editable members, the build-map of the related editable

member is in an inconsistent state. The SCLM Administrator must now act to

recover the source into a development group. From this group edit compare can be

used to merge any desired changes from intermediate levels, and the member can

be fixed and then built, tested, and promoted through the normal development

process.

The ability of the members in the package to be backed out is dynamically

assessed before any backout operation. This status is established by checking the

 a. Promote Copy

┌────────────┐ �─────────────────

│ │

│ Prod ├──────────────────────┐

│ │ │

└──────┬─────┘ ┌─────┴──────┐

 │ │ │

 │ │ Backup │

 │ │ │

 │ └────────────┘

┌──────┴─────┐ b. Promote Purge

│ │

│ Pre-Prod │

│ │

└──────┬─────┘ c. Package details file updated

 │

 │

 │

┌──────┴─────┐

│ │

│ Test │

│ │

└──────┬─────┘

 │

 /

 /

Figure 93. Package Backout—Restore Phase

Package Backout Utility

Chapter 9. Using SCLM Functions 221

statistics timestamp of the old and new members, and comparing them to the

timestamps recorded in the package details file. Any differences invalidate the

member for restoration.

When a restore is requested, the equivalent of normal promote processing is

performed from the backup group, with both the Promote Copy and Purge phases.

During recovery, the member in the backup library is purged. This is because once

a member has been restored, it cannot be restored again.

You can choose to back out either the whole package, or one or more individual

members.

By default, member-level restore is deactivated. To activate this, add the parameter

BKMBRLVL=Y to the FLMGROUP macro.

If a promote of a backout package completes successfully, and the same package

name is used again in a package, it will overwrite the details of the previous

package and members.

Cleanup of backed-up packages can be performed online or through a batch job.

The cleanup procedure purges package details from the Package Details file, and

deletes related members in the backup data sets that have not already been

restored and purged.

Package Functions

Figure 94 shows the panel that is displayed when you select Option 10, Package

Functions, from the Utilities panel.

 You use this panel to specify the package library and select the packages you want

to work with. The fields for the Package Functions - Entry panel are:

Menu SCLM Utilities Help

──

 SCLM Package Functions - Entry Panel

 SCLM Library:

 Project . : SLMTEST7

 Group . . . TEST

 Type . . . : PACKAGE

 Member . . . (Blank or pattern for member selection list)

 Package Member/Type Filter

 Member . . . (Blank or pattern)

 Type (Blank or pattern)

 Options

 / Match backed up members only

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 94. SCLM Package Functions Utility (FLMPF#P)

Package Backout Utility

222 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Project The project that was specified on the SCLM Main Menu. This field

is display only. An Alternate field also appears if you specified an

alternate project definition.

Group The name of the backup group. This field is required. There are no

default values.

Type The type from which information is to be deleted. The type value is

determined by the current project definition.

Member The name or pattern of the members to be processed. If the member

name is left blank or a pattern is entered, a package selection list is

displayed. You can use patterns for the member name. See

“Specifying Selection Criteria” on page 180 for details.

Package

Member/Type Filter

Filtering is performed when a pattern is specified in the filter

member and/or type fields. SCLM searches each package to see if it

contains a matching member and type value. If no type field is

entered then the filtering will match the member only. If no member

is specified the filtering will match the type only.

Note: The status of the package on the subsequent package list will

be the status of the first matching member if the member status is

in error.

Match backed up

members only

Use the match option to restrict the matching of members within a

package to only backed up members. Set the match option to blank

to match on all members referenced within a package.

Figure 95 shows the packages available for backout at a given level.

 To the left of each package listed is a space for entering a line command:

S Display the list of members in the package. For more information about the

options available from the SCLM Package Member Details panel, see “Package

Member Details” on page 224

R Restore the selected package.

Menu SCLM Functions Utilities Help

──

 Package List SLMTEST7.BACKUP.PACKAGE Row 1 to 12 of 12

 S=View D=Delete R=Restore

 Package Status Member Date/Time Restored Date/Time

 JTEST01 BACKEDUP 2002/10/17 12:50:15

 TSTPACK5 BACKEDUP 2002/10/10 22:18:37 2002/10/10 22:18:41

 TSTPETE8 NOBACKUP 2002/10/10 22:09:17 2002/10/10 22:09:20

 TSTPETE7 BACKEDUP 2002/10/10 22:05:20 2002/10/10 22:05:24

 TSTPETE4 BACKEDUP 2002/10/10 02:09:12 2002/10/10 02:09:15

 TSTPACK6 BACKEDUP 2002/10/10 00:32:30 2002/10/10 00:32:36

 TESTSLC3 NOBACKUP 2002/08/28 04:35:23 2002/09/11 23:12:18

 TESTSLC2 RESTORED 2002/08/27 04:06:32 2002/09/05 02:10:28

 TESTSLC BACKEDUP 2002/08/27 02:42:21

 TESTPKG3 BACKEDUP 2002/08/19 00:58:58

 TESTPKG2 RESTORED 2002/08/14 03:46:53 2002/09/16 00:41:28

 TSTPETE1 BACKEDUP 2002/08/13 23:38:20

 ******************************* Bottom of data ********************************

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 95. SCLM Package List Panel (FLMPFL#P)

Package Backout Utility

Chapter 9. Using SCLM Functions 223

When you enter the R line command beside a member name, SCLM attempts

to restore the selected package. If the operation completes successfully, the

Status field displays the word ″Restored″ and the current date and time

appears in the Restored Date/Time field.

Note: Only packages whose status is BACKEDUP can be restored with this

command. The target members and backup members associated with

this package are validated before the restore process is performed.

If an error occurs the status changes to indicate one of the following:

INVTARG At least one of the target members to be restored has a

different date to the target member at the time the package

was created.

OBSOLETE At least one package member has been superseded by another

package.

D Delete the package and its associated backup members.

 When you enter the D line command beside a package name, SCLM deletes

the package and its corresponding backup members. If the operation completes

successfully, the Status field displays the word ″Deleted″.

Package Member Details

When you enter the S line command beside a package name, the SCLM Package

Member Details panel lists the members contained in the package.

 The fields for the Package Member Details panel are:

 Sel Enter the S line command next to a member to select it for member

level restore. The member status must be BACKEDUP, NEWBKUP,

or MODBKUP. If the status is not one of these values, the line

command is ignored. If a member is already selected, entering the S

line command removes it from the selection.

Menu SCLM Functions Utilities Help

──

 Member List : SLMTEST7.BACKUP.PACKAGE(JTEST01) Row 1 to 5 of 5

 Enter primary command R to perform member level restore

 Enter line command S to toggle member selection

 Sel Member Rec Status Type Member Date/Time Restored Date/Time

 JTEST01 INITIAL ARCHDEF

 JJMSCPR ASM 2002/04/12 12:32:15

 JJMSCPR BACKEDUP ASMLIST 2002/04/12 12:32:43

 JJMSCPR BACKEDUP NCAL 2002/04/12 12:32:00

 JJMSCPR BACKEDUP OBJ 2002/04/12 12:32:42

 ******************************* Bottom of data ********************************

 Command ===>

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 96. SCLM Package Member Details Panel (FLMPML#P)

Package Backout Utility

224 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Member The name of the members to be processed.

Rec An ’*’ in this column indicates members that are selected.

Status Indicates the backup status of the member. Possible values are:

INITIAL The target member did not exist before promotion.

Therefore, this member can not be backed up or

restored.

INVTARG The target member has been changed since this

package backout member was created. Therefore,

this member cannot be restored.

OBSOLETE The member in the backup library is NOT the

member referenced in this package. Therefore, this

member cannot be restored.

RESTORED This package member has been restored. It cannot

be restored again.

BACKEDUP The member has been backed up and if member

level restore is available it can be restored, or

alternatively if the package status is also

BACKEDUP then it can be restored with a

package restore.

NEWBKUP The package has been reused and this member

has not previously been backed up for this

package.

MODBKUP The package has been reused and this member

has previously been backed up for this package.

blank Indicates no backup has been made of this

member and it cannot be restored.

Type The type of the member.

Member Date/Time The date and time this member was last changed before being

packaged.

Restored Date/Time The date and time this member was restored.

Enter the R primary command in the Command field next to invoke member level

restore. If no members have been selected or member level restore is unavailable

then this command is ignored.

Unit of Work Utility

The Unit of Work utility allows you to use an ARCHDEF member as a member

list, from which you can use the standard SCLM utilities such as edit, build, view

build map, and promote. Unlike the SCLM Library utility, which constrains you to

working with one Type at a time, the Unit of Work utility provides access to all of

the members associated with an ARCHDEF, regardless of Type.

In this way, the SCLM administrator can neatly organize all members of one

language into separate libraries and a programmer can manage all the components

for one “unit of work” (UOW) from a single point of control, without having to go

back and forth to multiple member lists.

A Unit of Work member must be in standard ARCHDEF format and must contain

an INCLD, INCL, COPY, SINC, or PROM statement for each editable member-type

that is to be worked on for the programmer’s current task. In principle, any

Package Backout Utility

Chapter 9. Using SCLM Functions 225

ARCHDEF is eligible to be a Unit of Work, however the usefulness of the current

ARCHDEFs in this regard will be determined by their contents.

When an ARCHDEF is selected in the SCLM Unit of Work processing - Entry

Panel (or a new one is created), SCLM reads the member and creates a member list

of the contents. Any embedded ARCHDEFs can also be selected and this provides

a drill-down facility until the final non-ARCHDEF component is selected. This

member is presented to the user in edit mode. All normal SCLM member list

functions are available from this list, as well as some special “User” options that

can facilitate local implementations.

The ARCHDEF that creates the member list is referred to as the Unit Of Work. The

list of members generated from the Unit of Work is called a Work Element List. A

member from this list is called a Work Element.

 When you enter your choices from this panel, the UOW Member List panel is

displayed. From this panel, you can choose to select, edit, build, promote, and

otherwise manipulate the members. See “UOW Member List panel” on page 231

for details.

The fields on the SCLM Unit of Work Processing - Entry Panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project

definition. You cannot change the Project or Alternate fields on this

panel.

Group The group that you specified in the Group field on the SCLM Main

Menu. The group field can be modified to specify other groups

defined to the project.

 Menu SCLM Utilities Options Help

 ──

 SCLM Unit Of Work processing - Entry Panel

 SCLM Library:

 Project . : SCLMTEST

 Group . . . DEV1

 Type ARCHDEF (Must contain Architecture Definitions only)

 Member . . . (Blank or pattern for member selection list)

 Enter "/" to select option

 Hierarchy view

 / Confirm delete

 Show Member Description

 / View processing options for Edit

 / View processing options for Build

 / View processing options for Promote

 Option ===>

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 97. SCLM Unit of Work processing - Entry Panel (FLMUW#P)

Unit of Work Utility

226 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Type The identifier for the type of information in the ISPF library. While

this field does not prevent you from using other Types, only a

member constructed as an ARCHDEF will generate the appropriate

member list.

Member The name of an SCLM library member. You can display a member

list by leaving the Command field blank and the Member field

blank or by leaving the Command field blank and entering a

pattern as the member name. See “Specifying Selection Criteria” on

page 180 for details. Valid pattern characters are the asterisk (*) and

the logical NOT symbol (¬).

Hierarchy view Selects as input the library entered on the panel, as well as all the

libraries in its hierarchy view. The hierarchy is searched from the

bottom up for the first occurrence of the specified member. If you

do not select “Hierarchy view”, only the library entered on the

panel is used as input. This option is valid with all UOW Member

List commands except Delete, which defaults to NO.

Confirm delete Allows you to specify whether you want a confirmation panel to

appear when attempting to delete objects (text, accounting

information, or build map information) in the UOW Member List

panel. If you select this field, the Confirm Delete panel appears

every time you request a delete. As well as confirming the delete

request, this panel enables you to choose which information you

want to delete for the member. If you do not select this field, the

Confirm Delete panel does not appear for deletions and all data is

deleted without any additional user interaction.

Show member

description

Allows you to display the member list panel FLMUSM#P, which

contains an extra line displaying the description associated with a

member. The Description is entered via the SPROF command.

View processing

options for Edit

Allows you to indicate whether you want to verify or update edit

processing options or allow them to default to the values that last

appeared on the Edit Data Entry panel. When you select this option

and then attempt to edit a member in the UOW Member List, the

SCLM Edit Data Entry panel is displayed so that you can verify or

update edit processing options. If you do not select it, Edit options

default to those values that last appeared on the Edit Data Entry

panel and the panel does not appear.

View processing

options for Build

Displays the SCLM Build Data Entry panel so that you can verify or

update Build processing options before Build is run.

View processing

options for Promote

Displays the SCLM Promote Data Entry panel so that you can

verify or update Promote processing options before Promote is run.

Unit of Work Options

The SCLM Unit of Work processing - Entry Panel contains a unique set of Action

Bar choices, under the “Options” menu.

Unit of Work Utility

Chapter 9. Using SCLM Functions 227

Set UOW Data Set

Prefix

Displays a panel in which you can set the default prefix for all Unit

of Work output data sets.

Modify SCLM Job

Card

Displays the standard SCLM Verify Batch Job Information panel.

See “Batch Processing” on page 249 for details.

Define UOW List

Commands

Displays a panel in which you can create a customized list of

commands that display on the UOW Member List panel.

Define Work Element

List Commands

Displays a panel in which you can create a customized list of

commands that display on the UOW Member Contents panel.

SCLM Unit of Work Data Set Specification panel

In the SCLM Unit of Work Data Set Specification panel, you can specify the default

prefix for all Unit of Work output data sets.

 Menu SCLM Utilities Options Help

 ────────────────────── ┌───┐ ───────────

 SCLM U │ 1. Set UOW Data Set Prefix │

 │ 2. Modify SCLM Job Card │

 │ 3. Define UOW List Commands │

 SCLM Library: │ 4. Define Work Element List Commands │

 Project . : SCLMTES └───┘

 Group . . . DEV1

 Type ARCHDEF (Must contain Architecture Definitions only)

 Member . . . * (Blank or pattern for member selection list)

 Enter "/" to select option

 / Hierarchy view

 / Confirm delete

 / Show Member Description

 / View processing options for Edit

 / View processing options for Build

 / View processing options for Promote

 Option ===>

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 98. SCLM Unit of Work Options Action Bar choices

Unit of Work Utility

228 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The “Data set prefix” field defaults to your user ID. You can specify any prefix,

provided that the first delimiter is RACF-authorised.

Define Unit of Work list commands

In the SCLM Unit of Work List Commands panel, you can specify up to eight

user-defined line commands that will appear on the UOW Member List panel for

the current project.

There are 3 levels of Unit of Work list commands. These are:

User-defined

When you create your own Unit of Work list commands, they are saved as

a member in your ISPF user profile data set. The member name is derived

from the current project qualifier. If the project name is 7 characters or less,

a ″Y″ is added to the beginning of the member name. If the project name is

8 characters, the first letter of the project is changed to ″Y″. If the project

name is 8 characters and it already starts with a ″Y″, the second letter is

changed to a ″Y″. For example:

Project qualifier = HLASM, Member = YHLASM

Project qualifier = HLASMKIT, Member = YLASMKIT

Project qualifier = YEAR2000, Member = YYAR2000

In this way, each user can create a set of Unit of Work list commands that

are specific to each project.

Project-defined

Your project administrator can create a project-wide set of Unit of Work

List Commands by using these options to create a user list, then copying

the project member from their ISPPROF DDNAME, to a library that is

allocated to ISPTLIB ahead of the ISPF libraries.

ISPF-supplied

This currently contains a single default entry, Versions. The member is

stored in the ISPF-supplied library allocated to ISPTLIB.

 Menu SCLM Utilities Options Help

 ─ ┌──┐ ─────────────────

 │ SCLM Unit of Work Data Set Specification │

 │ │

 │ Enter/verify the UOW data set prefix below: │

 S │ │

 │ Data set prefix: USERID.UOW │

 │ │

 │ Command ===> │ ions only)

 │ F1=Help F3=Exit F12=Cancel │ tion list)

 └──┘

 Enter "/" to select option

 / Hierarchy view

 / Confirm delete

 Show Member Description

 / View processing options for Edit

 / View processing options for Build

 / View processing options for Promote

 Option ===> SCLMUOW

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 99. Set Work Data Set Prefix

Unit of Work Utility

Chapter 9. Using SCLM Functions 229

The order of precedence is:

User -> Project -> ISPF

When the SCLM Unit of Work List Commands panel is displayed, SCLM looks for

a member in the user’s profile data set that matches the naming convention for the

current project. If it does not find this member, it will look in the ISPTLIB project

library, and then in the ISPF library.

 The fields on the SCLM Unit of Work List Commands panel are:

LC The character that is to be entered to select this command.

Descr The keyword that will be displayed to represent this command.

Function The name of the function that will be invoked.

Type The type of function. This can be either CMD, PANEL, or PGM.

Status The comment that will be placed in the status field when the

command has successfully executed.

 When you first open this panel, SCLM displays any project-defined list of

commands. If there is no project-defined list, the ISPF default list is displayed. If

you make and save any changes to either of these lists, a copy of the displayed list

is saved into your user profile data set.

You can enter a maximum of 8 lines (commands). To define a valid command, all

the fields must be filled in. If you overtype a line with blanks, the line is deleted.

Only completed lines are saved.

If you delete all the lines in your user-defined Unit of Work list commands data

set, the member is deleted and the project-defined list becomes the default list.

This is displayed when you reopen the panel. If there is no project-defined list, the

ISPF default list is used.

 Menu SCLM Utilities Options Help

 ──

 SCLM Unit Of Work processing - Entry Panel

 SCLM Library:

 Project ┌──┐

 Group . │ SCLM Unit of Work List Commands Row 1 to 7 of 8 │

 Type . . │ Save changes ===> N │

 Member . │ Enter/verify the following line commands │

 │ LC Descr. Function Type Status │

 │ │

 Enter "/" t │ 1 USERCMD1 FFFFF CMD *FF │

 / Hierarch │ 2 USERCMD2 SSSSS PGM *SS │

 / Confirm │ 3 USERCMD3 VVVVV PANEL *VV │

 Show Mem │ │

 / View pro │ │

 / View pro │ │

 / View pro │ │

 │ │

 │ Command ===> │

 │ F1=Help F3=Exit F10=Actions F12=Cancel │

 Option ===> └──┘

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 100. SCLM Unit of Work List Commands panel

Unit of Work Utility

230 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Define Work Element List commands

In the SCLM Work Element List Commands panel you can specify up to eight

user-defined line commands that will appear on the Work Element List panel:

The fields on the SCLM Unit of Work List Commands panel are:

LC The character that is to be entered to select this command.

Descr The keyword that will be displayed to represent this command.

Function The name of the function that will be invoked.

Type The type of function. This can be either CMD, PANEL, or PGM.

Status The comment that will be placed in the status field when the

command has successfully executed.

 The SCLM Work Element List Commands panel operates in exactly the same way

as the Unit of Work List Commands panel, except that it uses the character ″Z″ as

the prefix identifier. For example:

Project qualifier = HLASM, Member = ZHLASM

Project qualifier = ZLASMKIT, Member = ZLASMKIT

Project qualifier = ZEROPROJ, Member = ZZROPROJ

See “Define Unit of Work list commands” on page 229 for details.

UOW Member List panel

The UOW Member List panel displays the list of ARCHDEFs that match the

member name pattern entered on the previous panel. You can apply the standard

SCLM line commands or your own user-defined UOW Member List commands to

each member in this list.

 Menu SCLM Utilities Options Help

 ──

 SCLM Unit Of Work processing - Entry Panel

 SCLM Library:

 Project ┌──┐

 Group . │ SCLM Work Element List Commands Row 1 to 7 of 8 │

 Type . . │ │

 Member . │ Enter/verify the following line commands │

 │ LC Descr. Function Type │

 │ │

 Enter "/" t │ A AAAA AAAAA CMD *AA │

 / Hierarch │ S SSSS SSSSS PGM *SS │

 / Confirm │ V VVVV VVVVV PANEL *VV │

 Show Mem │ │

 / View pro │ │

 / View pro │ │

 / View pro │ │

 │ │

 │ Command ===> │

 │ F1=Help F3=Exit F10=Actions F12=Cancel │

 Option ===> └──┘

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 101. SCLM Work Element List Commands panel

Unit of Work Utility

Chapter 9. Using SCLM Functions 231

The default commands available from this panel are:

S=Select Selects the ARCHDEF member and displays the contents as

another list of members (the Work Element List).

A=Acct Displays the Accounting Record for the specified member.

M=Map Displays the Build Map Record for the specified member.

B=Browse Displays the specified member in an ISPF Browse session.

D=Del Deletes the specified member. If the “Confirm delete” option was

selected on the previous panel, the Confirm Delete panel is

displayed, otherwise, the member is deleted without confirmation.

E=Edit Displays the specified member in an ISPF Edit session. If the “View

processing options for Edit” option was selected on the previous

panel, the SCLM Edit - Entry Panel is displayed, otherwise, the

member is opened for editing immediately, using the Edit options

most recently specified in the Edit Entry panel.

V=View Displays the specified member in an ISPF View session.

C=Build Builds the specified member. If the “View processing options for

Build” option was selected on the previous panel, the SCLM Build

- Entry Panel is displayed, otherwise, the member is built

immediately, using the Build options most recently specified in the

Build Entry panel.

P=Promote Promotes the specified member. If the “View processing options for

Promote” option was selected on the previous panel, the SCLM

Promote - Entry Panel is displayed, otherwise, the member is

promoted immediately, using the Promote options most recently

specified in the Promote Entry panel.

U=Upd Displays the SCLM Authorization Code Update panel for the

selected member.

 Menu SCLM Functions Utilities Help

 ──

 UOW Member List: SCLMTEST.DEV1.ARCHDEF - HIERARCHY VIEW - Member 1 of 10

 S=Select A=Acct M=Map B=Browse D=Del E=Edit V=View C=Build P=Promote U=Upd

 Z=Versions

 Member Status Text Chg Date Chg Time Account Bld Map

 FLM01AP1 DEV1 2003/06/10 10:39:40 DEV1 DEV1

 FLM01ARH DEV1 2003/06/10 10:39:40 DEV1

 FLM01CMD DEV1 2003/06/10 10:39:41 DEV1 DEV1

 FLM01LD1 DEV1 2003/06/10 10:39:41 DEV1 DEV1

 FLM01LD2 DEV1 2003/06/10 10:39:41 DEV1 DEV1

 FLM01LD3 DEV1 2003/06/10 10:39:42 DEV1 DEV1

 FLM01LD4 DEV1 2003/06/10 10:39:42 DEV1 DEV1

 FLM01SB1 DEV1 2003/06/10 10:39:43 DEV1 DEV1

 FLM01SB2 DEV1 2003/06/10 10:39:43 DEV1 DEV1

 PL1LEC01 TEST 2003/05/15 15:43:27 TEST DEV1

 ******************************* Bottom of data ********************************

 Command ===> Scroll ===> PAGE

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 102. UOW Member List panel

Unit of Work Utility

232 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

One additional command is provided as a sample of a user-defined Unit of Work

list command:

Z=Versions Lists versions of the selected member.

Work Element List panel

The Work Element List panel displays the contents of the selected Unit of Work

(ARCHDEF) as a list of members. You can apply the standard SCLM line

commands or your own user-defined Work Element List commands to each

member in this list.

 The default commands available from this panel are:

S=Sel/edit Where the member is an embedded ARCHDEF, this selects the

member and displays the contents as another Work Element List.

When the member is not an ARCHDEF, this opens the member for

editing. If the “View processing options for Edit” option was

selected on the SCLM Unit of Work Processing - Entry Panel, the

SCLM Edit - Entry Panel is displayed, otherwise, the member is

opened for editing immediately, using the Edit options most

recently specified in the Edit Entry panel.

E=Edit Displays the specified member in an ISPF Edit session, regardless

of the member type. If the “View processing options for Edit”

option was selected on the previous panel, the SCLM Edit - Entry

Panel is displayed, otherwise, the member is opened for editing

immediately, using the Edit options most recently specified in the

Edit Entry panel.

V=View Displays the specified member in an ISPF View session.

P(L)=Prom Entering “P” promotes the specified member. If the “View

processing options for Promote” option was selected on the

previous panel, the SCLM Promote - Entry Panel is displayed,

 Menu SCLM Functions Utilities Help

 ───

 Work Element List for UOW FLM01AP1 in SCLMTEST Row 1 to 2 of 2

 S=Sel/edit E=Edit V=View P(L)=Prom C(L)=Build U=Upd A=Acct M=Map D=Del B=Brws

 Z=versions

 Member Type Status Acct Last changed Language User

 FLM01SB1 ARCHDEF DEV1 03/06/10 10:39:43 ARCHDEF DOHERTL

 FLM01SB2 ARCHDEF DEV1 03/06/10 10:39:43 ARCHDEF DOHERTL

 ******************************* Bottom of data ********************************

 Command ===> Scroll ===> PAGE

 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 103. Work Element List panel

Unit of Work Utility

Chapter 9. Using SCLM Functions 233

otherwise, the member is promoted immediately, using the

Promote options most recently specified in the Promote Entry

panel.

 Entering “PL” displays the last promote listing, if the option to

save the Promote output to a data set was specified.

C(L)=Build Entering “B” builds the specified member. If the “View processing

options for Build” option was selected on the previous panel, the

SCLM Build - Entry Panel is displayed, otherwise, the member is

built immediately, using the Build options most recently specified

in the Build Entry panel.

 Entering “CL” displays the last build listing, if the option to save

the Build output to a data set was specified.

U=Upd Displays the SCLM Authorization Code Update panel for the

selected member.

A=Acct Displays the Accounting Record for the specified member.

M=Map Displays the Build Map Record for the specified member.

D=Del Deletes the specified member. If the “Confirm delete” option was

selected on the previous panel, the Confirm Delete panel is

displayed, otherwise, the member is deleted without confirmation.

B=Brws Displays the specified member in an ISPF Browse session.

SCLM Explorer

The SCLM Explorer utility provides an interactive facility for viewing the

relationships between components of a project. You can select as a starting point

any architecture definition or part member and then navigate up or down the

hierarchy of related ARCHDEFs or parts.

With SCLM Explorer, you can:

v Display a list of all components, or selected components.

v Select a component and identify its immediate relations (parent or child).

v Select a component and identify its related executable components.

In addition, the utility provides some impact analysis capability by identifying the

“buildable” or “linkable” components that would be affected by planned changes

to a lower-level component.

Component relationships are generally hierarchical. For example:

 Archdefs can include source parts

 Source parts include other source parts

 Archdefs can include other archdefs

Figure 104 on page 235 shows the panel that appears when you select Option 12,

SCLM Explorer, from the SCLM Utilities panel.

Unit of Work Utility

234 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Select option 1 to list the components in the project. Select option 2 to list the

architecture definitions in the project.

The following commands are available:

U (up) Show the parents of the selected component

D (down) Show the child components

L (LMOD) Show related executable components (load modules)

 Parent or child relations can be followed until no further relations remain. Position

the cursor on one of the displayed components and press Enter to show its parent

or child components. Parent relationships will generally terminate at a high level

architecture definition (HLMAP), while child relationships usually terminate with a

low-level copybook source or macro part.

As the relationship hierarchy is navigated, a ’path’ description is maintained,

identifying the chain of selected parts.

The relationship information is extracted from the accounting files in the project

database and stored in a set of ISPF tables. The tables are populated by the

FLMUEXTR utility (see “FLMUEXTR—the SCLM Explorer batch utility”). The data

displayed in SCLM Explorer therefore reflects the status of the project at the time

the batch utility was last run.

The extraction process is controlled via the following options on the ’Tables’ menu:

 Option 1 is used to specify the name of the ISPF table library. Your SCLM

Administrator can provide you with the library name.

 Option 2 is used to build the JCL for a batch job to extract data and populate

the ISPF tables.

FLMUEXTR—the SCLM Explorer batch utility

This program reads the project accounting files and populates a set of ISPF tables

used by SCLM Explorer. To keep the data current, this batch job should be run

 Menu Utilities Tables Help

 ──

 SCLM Explorer

 Option ===>

 Browse the relationships between entities within the project hierarchy .

 1 Parts Start with a list of parts

 2 Architecture Start with a list of architecture definitions.

 Notes: Set the table library name via the Tables menu.

 Ensure the tables have been populated by running the batch jcl

 generated under the Tables menu.

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

 F10=Actions F12=Cancel

Figure 104. SCLM Explorer panel (FLMUDEP0)

SCLM Explorer

Chapter 9. Using SCLM Functions 235

regularly, for example daily during overnight processing. This process would

typically be managed by the SCLM administrator.

Use the ″Build batch jcl...″ option from the Tables menu to create the JCL for

running the batch utility. The fields on the SCLM Explorer Batch Jcl panel are:

 Project Id The project name.

Table Library The name of the output ISPF table library.

This library must already exist. Note that the JCL build process

creates some tables in this library.

HLQ for accounting

file copy

Projects can have multiple accounting files. To simplify the data

extraction process a single input file is used. All project accounting

files are therefore copied into a single file. This parameter specifies

the high-level qualifier to use for this temporary file.

Ensure that the user ID to run the batch job has authority to delete,

allocate, and update files with this prefix.

HLQ of ISPF libraries The extract program runs under ISPF in batch.

Jobclass Run job in this class.

Msgclass Output messages to this class.

After all the fields have been specified, press Enter to build the JCL. You can

modify the JCL before submitting it if required.

Build (Option 4)

The build processor automatically compiles, links, or deletes output to make build

outputs match build inputs. The build function:

v Ensures total project integrity by verifying that all components defined to the

architecture being built are present and complete

v Performs necessary translations such as compiles and links

v Conditionally saves translator output in the database

v Generates a build report

Build compiles, links, and integrates software components according to the

architecture. For any group in the hierarchy, the build function uses the software

components within the hierarchy of that group to update the out-of-date members.

Use build to compile and link individual components as well as to integrate the

smaller components into larger components.

For each component that it processes, the build function takes one of the following

actions:

v Does nothing if the component has not changed since the previous build

v Deletes out-of-date outputs if that will leave the component in an up-to-date

state

v Compiles or links changed components.

At the completion of the build, SCLM, when requested, produces a report

identifying the members that were generated or deleted by the build function.

SCLM Explorer

236 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

You also can specify that a Build Report be generated without actually invoking

any translators. The Build Report identifies those components in the hierarchy that

would change if translators were to be invoked.

Before build begins processing the member, it tries to open the VSAM accounting

and cross-reference data sets for the group where the build is taking place. If you

do not have UPDATE authority to the data sets or if there is an error opening one

of the data sets, the build will fail. See the z/OS ISPF Software Configuration and

Library Manager Reference for more information about the processing done by the

build processor.

The panel shown in Figure 105 appears when you select Option 4, Build, from the

SCLM Main Menu.

Note: The NRETRIEV command key is enabled to work with this option. See

“Name Retrieval with the NRETRIEV command” on page 145 for more

information.

The fields for the SCLM Build - Entry panel are.

 Project The project that you specified on the SCLM Main Menu. An Alternate

field also appears if you specified an alternate project.

Group The group in which the build is to occur.

Type The type of the member to build.

Member The name of the member to build.

Figure 105. SCLM Build (FLMB#P)

Build (Option 4)

Chapter 9. Using SCLM Functions 237

Scope You must specify a scope equal to or greater than the scope specified

with the SCOPE keyword in the FLMLANGL macro.

Limited

To process those components that the architecture members directly

reference. If you use a source member, the build function processes

only that member.

Normal

To process the components and members referenced by the specified

architecture member. In addition, this scope processes upward

dependencies for all Ada-type source members referenced directly

by the architecture member and all source members referenced as

upward dependencies.

Subunit

To process the components and members processed in normal scope

as well as downward dependencies for all Ada-type source

members referenced directly by the architecture members.

Extended

To process the components and members processed in normal scope

as well as downward dependencies for all source members within

the normal scope and the source to all outputs referenced. In

addition, extended scope processes any outputs referenced via LINK

architecture definition statements or parsed includes. Extended

scope also includes anything that Promote verifies that is related to

the member built. For example if the architecture definition

statement LINK is used to reference a load module, the architecture

definition that created the referenced load module is included in the

extended scope.

 Because SCLM uses information from the most recent build map to

determine what should be included in extended scope, extended

scope may include members that are no longer relevant to the

architecture. If you receive error messages about members that are

no longer relevant to the architecture definition, try building in

normal scope before using extended scope.

Build (Option 4)

238 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Mode

Conditional

To check for unacceptable translator return codes (for example,

compiler or linker return codes). Processing stops immediately if

build detects any translation errors.

 SCLM saves build maps and translator output only for translations

that complete successfully. However, the translator listings (if

desired) for all components processed, and the build report, are

saved and reflect the final results of the build.

Unconditional

To continue processing of all members despite translation errors of

other members.

 Use this mode when you need to update complete applications or

large subapplications. You can also use this mode initially to detect

translation errors in several components.

 As with the conditional mode, BUILD will stop when verification

errors occur and not continue on to execute the BUILD translators.

After a successful verification of the members, SCLM will pass

control to the BUILD translators, regardless of the return code value

from each translator. This will provide information as to the extent

of any errors that may have been introduced by changing the

members. A conditional BUILD would stop after the first translator

return code that exceeds the GOODRC value for the related

FLMTRNSL macro.

 Build does not attempt a translation unless all of its dependencies

that were in scope were completed successfully. For example, a

linkedit is not attempted if the compilation of a source member

failed.

Forced

To force all requested components to be translated again regardless

of the previous status of the modules.

Report

To generate a complete build report without performing an actual

build. The report reflects the potential results of an unconditional

build.

Output control Specify the destination for messages, report, and listings when they are

executed (Ex) or submitted (Sub), by entering the corresponding

destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4 for

None.

When executing a build in the foreground, the build listing is browsed if

a translation error occurs; otherwise, the build report is browsed. The

translator is responsible for providing the build listing.

Note: If no output is specified for Report, no build user exit information

is produced. That is because SCLM provides the build user exit with

information from the build report.

The data sets that are created are not deleted. Specifying a volume that

already contains a report, message or listing data set could result in JCL

errors when the job is submitted.

Build (Option 4)

Chapter 9. Using SCLM Functions 239

Error listings only The build service allows you to generate a temporary listings file. If you

do not select Error listings only, all translator listings are copied to the

temporary listings file. If you select it, only those members receiving a

translator error are copied to the temporary listings file. An empty file

indicates that no errors occurred. The file is temporary in the sense that

the contents are not under SCLM control and may be purged by the

user.

Workstation Build Specify whether the build will invoke any workstation translators. For a

foreground build which invokes a workstation translator, SCLM will

verify that an ISPF workstation connection exists before executing the

build. For a batch build which invokes a workstation translator, SCLM

will verify that the information required to initiate an ISPF workstation

connection has been set by a previous build or the workstation build

pull-down. If not, SCLM will prompt the user to enter this information

before the build job is submitted. If the build does not invoke a

workstation translator, do not specify this field.

Process You can call the processing part of the build utility from the interactive

or batch environment by selecting Execute or Submit, respectively. If you

request batch processing by selecting Submit, you must specify the job

statement information that is used in the JCL generated for batch

processing.

For information about using a unique jobname on the jobcard in batch

processing, see “Batch Processing” on page 249.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Build Report Example

The build report provides a synopsis of the build. It includes:

v The date and time of the build

v The mode used

v The name of the component that was requested to be built

v The last change date and time of the component

v The project definition used

v The software components that were successfully translated

v The build maps that required regeneration

v The out-of-date software components that caused the regeneration

v The software components and build maps that were deleted from the build

group.

This report provides a synopsis of the Build. The title page identifies the date and

time of the build, as well as the scope and mode used. It also lists the member you

specified on the Build panel and the project definition specified on the SCLM Main

Menu.

The report lists the components that were built and saved in the database; that is,

those components that passed the compilation or linkage edit phase. It also shows

the build maps that required (re) generation, along with a list of software

components that build used to determine that (re)generation of the build map was

necessary. After the section for items generated, the report contains a section for

items deleted. It lists the build outputs that were deleted from the build group.

Finally, it lists the build maps that were deleted.

Note: Intermediate information is in the report if it is valid and useful. The

following example is an Ada build report, so the sections on Intermediate

Build (Option 4)

240 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Code Generated and Intermediate Code Deleted have been included. These

two sections are omitted from the report for builds that do not affect

intermediate code.

If you enter REPORT in the Mode field, the report indicates what would be rebuilt or

deleted if you requested an unconditional build.

Figure 106 shows an example of a build report.

** **

** **

** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) **

** **

** B U I L D R E P O R T **

** **

** 2000/11/18 08:41:19 **

** **

** PROJECT: SCLM69 **

** GROUP: USER **

** TYPE: MVS2ADA **

** MEMBER: GSPEC **

** ALTERNATE: SCLM69 **

** SCOPE: NORMAL **

** MODE: CONDITIONAL **

** **

** **

 ******* B U I L D O U T P U T S G E N E R A T E D ******* Page 1

MEMBER TYPE VERSION KEYWORD

------ ---- ------- -------

FLM01MD3 OBJ 6 OBJ

FLM01MD5 OBJ 6

FLM01MD6 OBJ 6

FLM01MD3 LIST 6 LIST

FLM01MD5 LIST 6

FLM01MD6 LIST 6

FLM01LD3 LOAD 6 LOAD

FLM01LD3 LMAP 6 LMAP

 ******* B U I L D M A P S G E N E R A T E D ******* Page 2

 (REASON FOR REBUILD)

MEMBER TYPE VERSION MEMBER TYPE

------ ---- ------- ------- ----

FLM01LD3 ARCHDEF 3 FLM01MD3 SOURCE

FLM01MD3 SOURCE 6 FLM01MD3 SOURCE

 FLM01MD5 SOURCE

 FLM01MD6 SOURCE

FLM01MD5 SOURCE 5 FLM01MD5 SOURCE

FLM01MD6 SOURCE 4 FLM01MD6 SOURCE

Figure 106. Build Report (Part 1 of 2)

Build (Option 4)

Chapter 9. Using SCLM Functions 241

Promote (Option 5)

The promote function copies members from any group to the next higher group.

Note: SCLM promote only copies a member over a member at the next level if it

has changed. Two members with the same name are considered to be

changed if the accounting data and the member statistics are different. If

you retrieve the most recent version of a member into the hierarchy, the

recovered member at the development group is considered the same as the

member residing in the hierarchy. If the member in the hierarchy has been

corrupted, but the statistics are still valid, SCLM will not overwrite the

existing member during promotion. The promote report indicates that the

member was purged but not copied. If you recover the most recent version

of a member in order to replace a corrupted member, you must save the

member at the development group to refresh the accounting data. You can

save the member using SCLM edit, migrate in forced mode, or the SAVE

service. Then build and promote the member as usual.

The promote function:

v Determines which components are eligible for promotion

v Verifies that the application is complete and current

v Promotes the components that are at the current group and within the scope of

the promote

v Potentially purges the components from the current group (and possibly lower

key groups)

v Generates a promote report

v Rebuilds the promoted member at the ’to group’, if requested in the language

definition

 ******* B U I L D O U T P U T S D E L E T E D ******* Page 3

MEMBER TYPE VERSION KEYWORD

------ ---- ------- -------

FLM2M01 OBJ 4 OBJ

FLM2M02 OBJ 4

FLM2M03 OBJ 4

FLM2M01 LIST 4 LIST

FLM2M02 LIST 4

FLM2M03 LIST 4

FLM2LD LOAD 5 LOAD

FLM2LD LMAP 5 LMAP

 ******* B U I L D M A P S D E L E T E D ******* Page 4

 (REASON FOR DELETE)

MEMBER TYPE VERSION MEMBER TYPE

------ ---- ------- ------- ----

FLM02LD ARCHDEF 6 FLM02LD LOAD

 FLM02LD LMAP

FLM02MD1 SOURCE 6 FLM02MD1 OBJ

 FLM02MD1 LIST

FLM02MD2 SOURCE 6 FLM02MD2 OBJ

 FLM02MD2 LIST

FLM02MD3 SOURCE 6 FLM02MD3 OBJ

Figure 106. Build Report (Part 2 of 2)

Promote (Option 5)

242 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Promote gives you an easy and efficient method to move data through a hierarchy.

As you build software components, they become eligible for promotion to the next

group in the hierarchy. Promote is based on architecture or source members; thus

you must build software components successfully before you can promote them to

the next group. Using architecture members, you can promote individual software

components or sets of software components during one promote. SCLM processes

all data types associated with a component as a unit.

When the promote is complete, the promote function generates a report identifying

the components promoted.

The Build function is invoked when the members are copied successfully and any

language definitions of members promoted into this group require rebuilding. The

promoted member is conditionally rebuilt at the to-group level, as well as any

components with the given languages. Other components are not rebuilt. Build

messages, listings, and reports are generated based on the values on the SCLM

Build - Entry Panel.

You also can specify that only a Promote Report be generated. The Promote Report

identifies those components in the hierarchy that would be copied or moved if the

promote function were to be invoked.

The panel shown in Figure 107 appears when you select Option 5, Promote, from

the SCLM Main Menu.

Note: The NRETRIEV command key is enabled to work with this option. See

“Name Retrieval with the NRETRIEV command” on page 145 for more

information.

Figure 107. SCLM Promote (FLMP#P)

Promote (Option 5)

Chapter 9. Using SCLM Functions 243

The fields on the SCLM Promote - Entry panel are:

 Project The project that you specified on the SCLM Main Menu. An

Alternate field also appears if you specified an alternate project.

From group The group from which to promote the member

Type The type of the member

Member The name of the member to be promoted

Scope Select one of the following:

Normal

To process the components and members directly referenced by

the specified architecture member. In addition, this scope

processes upward dependencies for all Ada-type source

members referenced directly by the architecture member and all

source members referenced as upward dependencies.

Subunit

To process the components and members processed in normal

scope as well as downward dependencies for all Ada-type

source members referenced directly by the architecture

members.

Extended

To process the components and members processed in normal

scope as well as downward dependencies for all source

members within the normal scope.
Note: You must specify a scope equal to or greater than the scope

specified with the SCOPE keyword in the FLMLANGL macro.

Mode Select one of the following:

Conditional

To bypass the copy and purge steps if promote discovers a

verification error.

 Promote compares dates in the build maps against dates in the

database for all software components taking part in the

promote. Software components are not promoted if they are

deemed out of date. Use this mode to guarantee complete

project integrity.

Unconditional

To perform copy and purge processing of all members despite

verification errors of other members and to promote only those

members with correct build map information.

 Use this mode to promote software components for incomplete

or partial applications. For example, if some software

components referenced by an architecture member are not

complete but are required in the next group of the hierarchy,

you can use this mode to promote those software components.

 The use of the unconditional mode does not guarantee

application integrity, and you should use it with caution. It is,

however, an effective method of promoting dependent software

components that you plan to integrate at a later date. The

Unconditional mode field is not retained on the Promote panel.

If Unconditional is used, the panel is changed to Conditional

when the promote returns to the panel.

Report

To perform verification and report generation processing. The

report contains a list of members eligible for promotion.

Promote (Option 5)

244 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Output control Specify the destination for messages and the report when they are

executed (Ex) or submitted (Sub), by entering the corresponding

destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4

for None.

Workstation Promote Specify whether the promote needs a workstation connection. For

Foreground, SCLM verifies that an ISPF workstation connection

exists before executing the promote. For Batch, SCLM verifies that

the information required to initiate an ISPF workstation connection

has been set by a previous build or promote or from the

workstation build pull-down. If not, SCLM prompts the user to

enter this information before the build job is submitted. If the

promote does not require a workstation connection, do not use this

field.

Process You can call the processing part of the Promote - Entry Utility from

the interactive or batch environment by selecting Execute or Submit,

respectively. If you request batch processing by selecting Submit,

you must specify the job statement information which is used in the

JCL generated for batch processing.

For information about using a unique jobname on the jobcard in

batch processing, see “Batch Processing” on page 249.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Promote Report

Figure 108 on page 246 shows an example of the promote report.

The promote report provides an accurate account of the promote. It lists all

members promoted to the next group and all members purged from lower groups.

It also marks “out-of-scope” software components with an asterisk (*).

Note: An out-of-scope software component is an architecture that is referenced with

a LINK statement but not with an INCL statement. It is not within the

domain of the architecture specified.

The report displays specific information according to the promote modes and

scopes you select.

v For a promote of a member from a non-key group to a key group, the report

indicates that the member was:

– Copied to the next group

– Purged from the “from” group

– Purged from the last key group.
v For a promote of a member in a key group to a non-key group, it indicates that

a copy was made.

v For a promote of a member in a key group to a key group, it indicates that a

copy was made and a purge was performed on the source key group.

v For a second promote that follows a failed promote, it indicates the work

completed by that promote only.

For more information about key and non-key groups, see “Key/Non-Key Groups”

on page 143.

If a verification error occurs for a member, the report displays the message number

that identifies the error in the Message field.

Promote (Option 5)

Chapter 9. Using SCLM Functions 245

Figure 108. Promote Report (Part 1 of 7)

Figure 108. Promote Report (Part 2 of 7)

Figure 108. Promote Report (Part 3 of 7)

Promote (Option 5)

246 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Figure 108. Promote Report (Part 4 of 7)

Figure 108. Promote Report (Part 5 of 7)

Figure 108. Promote Report (Part 6 of 7)

Promote (Option 5)

Chapter 9. Using SCLM Functions 247

Processing Errors

The Promote function can recover from most SCLM environment errors. However,

data set overflow and data contention, as described as follows, can occur during a

promote.

Data Set Overflow

Partitioned data sets tend to become full and require compression. When a target

data set runs out of space during a promote, promote attempts to recover and

continue the promote. Although you get system ABEND messages, the promote

ignores the ABEND and continues. However, processing bypasses making a copy

to this data set and it also bypasses the subsequent purge step for members that

were not copied.

If data set overflow occurs, follow these steps:

1. Compress or reallocate the data set with larger space allocations.

2. Increase the directory block allocation, if necessary.

3. Promote again.

The second promote copies only the members that did not copy in the original

promote. If successful, the purge step is normal. The resulting promote report

identifies only the copied and purged members in the second promote.

Data Contention

Be careful when you process certain combinations of SCLM builds and promotes

simultaneously. You should not promote or build members that have not

completed processing for another promote. Compiler errors or promote verification

errors in one or more of the concurrent jobs can occur. You can normally recover

from most errors by running the failed function again.

Figure 108. Promote Report (Part 7 of 7)

Promote (Option 5)

248 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Command (Option 6)

To use the SCLM command shell, select Command (option 6) from the SCLM Main

Menu. The panel shown in Figure 109 appears.

 Use this panel to execute TSO, CLIST, REXX execs, or SCLM commands from

within SCLM.

Easy Cmds (Option 6A)

The Easy Cmds option provides a menu that lists the available FLMCMD services.

When you select an option from this menu, ISPF displays a panel that provides

data entry fields for the parameters associated with the selected service.

For details about the specific service panels, see the description of the relevant

service in the z/OS ISPF Software Configuration and Library Manager Reference.

Batch Processing

The Verify Batch Job Information panel shown in Figure 110 on page 250 is the

standard panel for the SCLM functions that allow you to select batch processing.

When you enter SUBMIT and when the JOB statement is not on the submittal

panel, this panel appears. SCLM requires JCL job statements when you process in

batch mode.

Note: SCLM can automatically generate unique jobnames. If you use the jobname

USERIDx, where x is a letter of the alphabet or a digit, SCLM increments

this letter or number by one for the next job. For example, if your USERID

is SMITH, and your jobcard is submitted with the jobname SMITH3, the

jobname is updated to SMITH4.

 SCLM Command Shell

 Enter TSO or SCLM commands below.

 ===> __

__

__

 F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 109. SCLM Command Shell (FLMTSO)

Command (Option 6)

Chapter 9. Using SCLM Functions 249

Output Disposition

The Output Disposition panel shown in Figure 111 is the standard end panel for

many SCLM functions when you have sent output to a data set. It allows you to

determine the disposition of the report or messages data set previously displayed.

You can choose between keeping the data set, deleting the data set, printing and

keeping the data set, or printing and deleting the data set.

Menu SCLM Utilities Jobcard Help
Batch Job Information

SCLM Batch Job Information

Enter/verify JOB statement information below:

===> //V$USERID$ JOB (ACCOUNT,BIN,BLDG,DEPT,FLAG,N)’’TSOUSERNAME’._______
===> // MSGCLASS=A,CLASS=A,NOTIFY=USERID.________________________________
===> // USER=,GROUP=????????,PASSWORD=????????___________________________
===> //*___

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Output control:
Ex Sub Process... 2 1. Execute

Messages... 3 3 1. Terminal 2. Submit
Report..... 3 2 2. Printer
Listings... 3 3 3. Dataset Printer . . . *

4. None Volume . . . ______

Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 110. Verify Batch Job Information (FLMDSU#P)

Menu SCLM Utilities Jobcard Help
--

Output Disposition

K Keep data set (without printing) PK Print and keep data set
D Delete data set (without printing) PD Print and delete data set

Enter END command to keep data set without printing.

Data Set Name USERID.BUILD.REPORT19

General purpose print/punch SYSOUT class information:
Print A
Punch

Job statement information:
===> //JOBNAME JOB (ACCOUNT,BIN,BLDG,DEPT,FLAG,N),’NAME’,CLASS=C,MSGCLASS=H.
===> // USER=USERID,PASSWORD=XXXX
===> //* GROUP=PROJ1,NOTIFY=PROJ1DIR

===> //*
Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

Figure 111. Output Disposition (FLMDEXT)

Output Disposition

250 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

When you send output to a data set, the database contents, architecture, build, and

promote functions display a report data set if they complete with an acceptable

return code. The migration utility displays a message data set because its report is

a set of messages.

If you allocate the output to a data set and 99 data sets have already been

allocated, SCLM either overlays a new data set over an old one or concatenates a

new data set with an old one. To avoid this problem, delete old data sets to allow

allocation of new data sets.

If error conditions occur in any of these functions (except build translator errors)

and SCLM routes messages to a data set, SCLM displays the message data set, not

the report data set. In either case, the Output Disposition panel appears after you

finish browsing the displayed data set.

The view, edit, library, sublibrary management, and audit and version utility

functions do not create report or message data sets and, consequently, do not

display the Output Disposition panel.

Sample Project Utility (Option 7)

The SCLM Sample Project Utility makes it easier to create a sample SCLM project

to use in learning the functions of SCLM, or as the basis for building a project for

production use. In addition, you can use the Sample Project Utility to delete a

project that was built using the utility.

The SCLM Sample Project Create function, Option 10.7.1, creates the data sets

required for a simple SCLM project (including the VSAM accounting data base). It

also creates a data set listing information about the project.

You must provide the names of several existing data sets on your system (such as,

the ISPF macros data set), and the location of the High Level Assembler on your

system. You have a choice of including a PLI sample if you have the PLI

Optimizing Compiler installed on your system.

You do not need knowledge of assembler or link-editing. The utility customizes,

assembles, and link-edits the project definition for you. The architecture definitions

are then imported from the ISPF sample library and the sample application is built

and promoted to the top level of the hierarchy. The project is then ready to use for

the Development Scenario described in Chapter 10, “Development Scenario,” on

page 253. Use this scenario to learn the capabilities of SCLM.

The SCLM Sample Project Delete function, Option 10.7.2, deletes a project that was

created with the Create utility. This function uses the information data set created

by the Create utility to identify the data sets to delete.

Output Disposition

Chapter 9. Using SCLM Functions 251

Sample Project Utility (Option 7)

252 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 10. Development Scenario

This chapter uses a sample application to describe the basic tasks you typically

perform using SCLM. The sample data sets referred to in the example are shipped

with the ISPF product.

Chapter 1, “Defining the Project Environment,” on page 3 provides step-by-step

instructions for the project manager to define the sample project for this scenario.

You can also define the sample project using Option 10.7, the SCLM Sample Project

utility. No knowledge of SCLM is required to use the utility. You can use this

hierarchy to gain some basic experience using SCLM. After examining some of the

project data sets and performing some SCLM operations, you will have a better

understanding of how SCLM can help you in your project activities.

This chapter walks you through the functions from the SCLM Main Menu. For a

complete description of the SCLM Main Menu options, see Chapter 9, “Using

SCLM Functions,” on page 145.

Understanding the Hierarchy and the SCLM Main Menu

This section provides an overview of the sample hierarchy and briefly describes

the functions available from the SCLM Main Menu.

The sample project uses a three-layer hierarchy composed of four groups.

Figure 112 is used to represent the SCLM hierarchy in this sample.

 Throughout the remainder of this chapter, this sample project is called PROJ1. If

the name established by your project manager is different, or you used a different

name to define the project using the SCLM Sample Project utility (Option 10.7), use

that name instead.

The sample application is composed of six programs that are used to build an

application called FLM01AP1, as shown in Figure 113 on page 254. The programs

are linked into four load modules. The four load modules are organized as two

subapplications, which in turn are components of FLM01AP1.

Note: If the PLI Optimizing Compiler is not included as a language in the sample

project, the application consists of five programs linked into three load

modules.

Figure 112. Sample Project Hierarchy

© Copyright IBM Corp. 1990, 2005 253

The sample that follows assumes that the SCLM project setup activities have been

completed as described in Chapter 1, “Defining the Project Environment,” on page

3 or that you have defined the sample project using the SCLM Sample Project

utility (Option 10.7).

Note: Source module FLM01MD2 and architecture member FLM01LD2 are

included only if PLI Optimizing Compiler is included as a language if the

sample is defined using the SCLM Sample Project utility (Option 10.7).

After the sample project has been defined, you can take the following steps to

begin using SCLM.

1. Log on to MVS.

2. Start ISPF to display the ISPF Primary Option Menu.

3. Select SCLM and press Enter. The SCLM Main Menu is displayed.

Understanding the Architecture Definition

This section describes the architecture definition and its importance in an SCLM

project. The architecture definition describes to SCLM how the components of an

application fit together. For more information about architecture definitions, see

Chapter 11, “Architecture Definition,” on page 265.

There are four types of architecture members:

HL (high level) HL architecture members reference application and

subapplication components.

Figure 113. Application FLM01AP1

254 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

CC (compilation control) CC architecture members contain the information

to produce and track software components with

object module output.

LEC (link-edit control) LEC architecture members contain the information

to produce a complete load module.

Generic Generic architecture members identify the source

member or groups of source members to be

processed by a processor other than a standard

compiler. The sample project does not contain

examples of generic architecture members.

 If you have several architecture definition statements that are used together in

many places, you can put them into a member and reference the member using the

COPY statement wherever you need the statements. When you use the COPY

statement, the contents of the specified member are inserted directly into the

respective architecture members.

1. Select View from the SCLM Main Menu. Specify PROJ1 in the Project field and

specify DEV2 in the Group field. Press Enter.

2. Specify ARCHDEF in the Type field and leave the Member field blank. Press

Enter. The architecture members are shown in the following table.

 Member Type Comments

FLM01AP1 HL References FLM01SB1 and FLM01SB2 with the INCL statement. A

build performed on FLM01AP1 results in a complete build for all

the code in the project, if necessary.

FLM01SB1 HL References FLM01LD1 and FLM01LD2 with the INCL statement.

A build performed on FLM01SB1 results in a complete build of

the FLM01SB1 subapplication, if necessary. If the PLI Optimizing

Compiler is not included as a language in the sample project,

FLM01SB1 references only FLM01LD1.

FLM01SB2 HL References FLM01LD3 and FLM01LD4 with the INCL statement.

A build performed on FLM01SB2 results in a complete build of

the FLM01SB2 subapplication, if necessary.

FLM01LD1 LEC Directs SCLM to produce the load module and load map for

FLM01LD1. The INCL statement references architecture member

FLM01CMD. The PARM statements pass parameters to the SCLM

BUILD translators.

FLM01LD2 LEC Directs SCLM to build load module FLM01LD2 from the source

FLM01MD2. The INCLD architecture statement is used to identify

FLM01MD2 as the source. Note that LOAD, LMAP, and SOURCE

are types identified by the FLMTYPE macro in the project

definition. If the PLI Optimizing Compiler is not included as a

language in the sample project, FLM01LD2 is not included.

FLM01CMD CC Directs SCLM to produce object code from FLM01MD1. SINC

identifies FLM01MD1 as the source member. Note that in addition

to object code (OBJ), there is also source listing (SOURCLST). OBJ

and SOURCLST are identified in the project definition with the

FLMTYPE macro.

FLM01LD3 LEC References FLM01MD3 with the INCLD statement. Other modules

are referenced with the copy of FLM01ARH. In this example,

FLM01ARH references FLM01MD5 and FLM01MD6. FLM01LD3

indirectly references FLM01MD5 and FLM01MD6 via the COPY

statement in FLM01ARH.

Chapter 10. Development Scenario 255

Member Type Comments

FLM01LD4 LEC References FLM01MD4 with the INCLD statement. Other modules

are referenced with the copy of FLM01ARH. In this example,

FLM01ARH references FLM01MD5 and FLM01MD6. FLM01LD4

indirectly references FLM01MD5 and FLM01MD6 via the COPY

statement in FLM01ARH.

FLM01ARH CC References modules FLM01MD5 and FLM01MD6 with the INCLD

statement. The LEC architecture members FLM01LD3 and

FLM01LD4 use the COPY directive to copy the contents of

FLM01ARH into their members for a build.

To create an architecture report:

1. Select Architecture Report (option 3.5) from the SCLM Main Menu, and press

Enter.

2. Type:

 ARCHDEF in the Type field

FLM01AP1 in the Member field

6 in the “Report cutoff” field

1 in the Process field

1 in the Messages field

1 in the Report field

Press Enter.

The output shows the hierarchy, the kinds of architecture members (HL, CC, and

LEC), and various cross-references. See “Architecture Report Example” on page 190

for an example of the architecture report.

Sample SCLM Development Cycle

Your typical daily operations using SCLM might flow like this: edit (SCLM editor),

compile (Build), and test, repeating this cycle until testing is complete, and then

promote. After the promote is performed, you or other developers can use the

SCLM editor to automatically draw members down to a development group for

modification.

The following list includes steps that you might perform in the development cycle

of a software component or any type of data that is under SCLM control.

Figure 114 on page 258 illustrates the project flow of the following steps. The

hierarchy used for this example is shown in Figure 112 on page 253.

1. The developer draws down a source member from group RELEASE to group

DEV1 and modifies it. The data at group RELEASE is the current release of the

project. Changes are now being made for the next release. When the developer

has made the modifications to the member, SCLM parses the member and

registers it with SCLM. The successful registering of the update makes this

member available for use by other SCLM functions.

2. The Build function is initiated against an architecture definition that includes

this parsed and stored source member. This build creates object modules

reflecting the changes that were made to the source member. The source,

architecture definition, and object module members used here have been given

the same member names. Thus, you can easily see how these members are

related, although their types are different. These naming conventions, however,

are not required by SCLM.

256 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

If the Build function does not complete successfully because of errors in the

modified members, you must use the SCLM editor again to correct the errors,

and try to build again.

3. The developer can now test the effect the changes have made to the

application.

4. The developer then moves all the changed data to the group TEST by invoking

PROMOTE using the same architecture definition that was previously built.

The data changes are now available to all developers because they have

reached a common group. If any changes in data made by the developer

conflict with changes other developers are making in their development

groups, these changes are found when the other developers build their changes

at their development group.

Alternately, the person appointed as SCLM project manager can do the

promote. The SCLM project manager is the person who has UPDATE authority

to TEST and promote changes to this group. The SCLM project manager can

guarantee all changes promoted to the group TEST have been unit tested

(because the project manager can control the promotes).

5. When all changes scheduled for the next release have been promoted to the

group TEST, testing the application can occur at this group while other

programmers are still developing software in the development groups.

6. Finally, after system testing is complete in the TEST group, the new release of

the project can be promoted to the RELEASE group.

Chapter 10. Development Scenario 257

Using the SCLM Editor

This section describes how to alter code using the SCLM editor. To illustrate how

SCLM protects project members from unintentional updates, you will change the

FLM01EQU member and create an error situation. This error causes the BUILD to

fail and prevents a PROMOTE until you correct the error.

FLM01EQU is an included member in FLM01MD3. SCLM automatically tracks

included members, so you do not have to specify their relationship in your

architecture definition.

 1. Return to the SCLM Main Menu, and specify DEV2 in the Group field. Select

the Edit option and press Enter.

Figure 114. Development Cycle

258 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

2. Select SOURCE in the Type field and FIX01 in the “Change code” field. Press

Enter to open the Edit Member list.

 3. Select FLM01EQU from the Edit Member list. Note that FLM01EQU is in the

RELEASE group and a draw down from the RELEASE group to the DEV2

group takes place.

 4. From the command line, issue the SETUNDO ON command. Different system

installations will have different profile defaults set, so issuing this command

will ensure that you have PDF Edit UNDO set On.

 5. Duplicate the line R4 EQU 4 and change WORK REGISTER in the comment to DEV2

ERROR. Press Enter.

 6. From the command line, issue UNDO: type Undo on the command line and

press Enter. The change to the comment is removed. The duplicate line

remains. Note that UNDO works only if your profile has UNDO set to ON.

 7. Reenter the change to create the error situation for this example from step 4.

 8. Use the split screen option. Select SCLM from the ISPF Primary Option Menu.

Select Edit, specify PROJ1 in the Project field, and specify DEV1 (DEV1 is

another development group in this SCLM project) in the Group field.

Attempt to edit FLM01EQU by typing FLM01EQU in the Member field and

pressing Enter. Press the Help key twice to retrieve the long message

describing the error condition. SCLM locked FLM01EQU for DEV2 at the time

of the draw down. FLM01EQU cannot be updated by another group until a

PROMOTE is issued from DEV2 or FLM01EQU (member and accounting

record) is deleted from DEV2. End split screen.

 9. Return to the DEV2 edit screen and issue the SPROF edit command: type

SPROF on the command line and press Enter. Note that the language is ASM

and the change code is FIX01. SCLM prompts you for a language when a

member is created. You can use SPROF to change the language SCLM

associates with the member. Press Enter to return from the SCLM Edit Profile

Panel to the SCLM Edit panel.

10. Press the End key to save the member and end the edit session. Use the Help

key to display the long message, which indicates that SCLM parsed and

stored the member.

Press the End key twice to return to the SCLM Main Menu.

Understanding the Library Utility

This section describes the library utility functions typically used by developers.

You can use the library utility to browse and delete components and the

accounting information that is generated with edit/save, build, and promote

activities.

1. Select Utilities from the SCLM Main Menu, and press Enter.

2. Select Library, and press Enter.

3. To browse the accounting record for PROJ1.DEV2.SOURCE(FLM01EQU), type:

 A on the command line

DEV2 in the Group field

SOURCE in the Type field

FLM01EQU in the Member field

Press Enter.

Notice the date and time of the last update (“Change date” and “Change time”

fields) for FLM01EQU.

Chapter 10. Development Scenario 259

4. To display the statistics, select the “Display statistics” field and press Enter.

5. Return to the accounting record by pressing the End key once. Note that the

FLM01EQU has one change code. To display the change code, select the

“Number of change codes” field and press Enter. The change code FIX01

appears along with the Change date and Change time.

6. Return to the Library Utility panel by pressing the End key twice.

7. To browse the member PROJ1.RELEASE.SOURCE(FLM01MD3), type:

 B on the command line

RELEASE in the Group field

FLM01MD3 in the Member field

Press Enter.

Notice that FLM01MD3 contains a COPY statement for FLM01EQU.

8. Press the End key until you are back at the SCLM Main Menu.

Using Build

This section illustrates how to use the SCLM build processor when one of the

members has an error. The SCLM build processor translates all members and all

modules that have been affected by alterations. A build operation prepares the

member for a promote operation.

1. Select the Build option from the SCLM Main Menu, and press Enter.

2. Execute a Build operation by typing:

 DEV2 in the Group field

ARCHDEF in the Type field

FLM01AP1 in the Member field

/ in the “Error listings only” field

1 in the Mode field

2 in the Scope field

1 in the Messages field

1 in the Report field

3 in the Listings field

Press Enter.

Notice that you did not have to type EX on the command line or re-enter a

value in the Process field. You set this value when you created the Architecture

Report. The value is carried from panel to panel and is maintained as is until

you change it.

3. Note the return code of 8 from the assembler. There is also an error from the

translator for FLM01MD5, which contains FLM01EQU. The assembler listing is

contained in userid.BUILD.LISTnn.

Because of the assembler error, SCLM Build will place you in Browse of the

LISTING data set (userid.BUILD.LISTnn). Note that the error is the duplicate

symbol R4.

If you are using a tso-prefix that is not your user ID, the data set name will be

tso-prefix.userid.BUILD.LISTnn.

4. When you are finished browsing the LISTING data set, press the End key. The

Output Disposition panel appears. Type D to delete the LISTING data set, or

type K to keep the LISTING data set. After pressing Enter, the Build panel

appears.

260 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Because the FLM01EQU member has changed and because FLM01MD5 contains

the FLM01EQU member, Build attempts to assemble and link FLM01MD5.

However, FLM01EQU contains the error you previously entered (a duplicate

symbol for R4) so nothing is assembled or linked.

Editing the Member to Correct Errors

This section describes how to re-edit the FLM01EQU member to correct the error

you introduced previously.

1. Select Edit from the SCLM Main Menu, leave PROJ1 in the Project field and

DEV2 in the Group field. Press Enter.

2. Specify FLM01EQU to edit the FLM01EQU member in PROJ1.DEV2.SOURCE.

3. Remove the duplicate R4 equate line.

4. Save the changes by pressing the End key.

Attempting to Promote a Member before Performing a Build

This section describes how SCLM protects the integrity of your project hierarchy

by not allowing you to promote a member that has not been successfully built. The

promote operation copies changed members up into the next group in the library

structure.

The build operation you attempted previously was unsuccessful. Therefore, the

promote you attempt in this section will also be unsuccessful. SCLM maintains

synchronization between source and object by ensuring that only successfully built

members can be promoted. This safety feature addresses the common problem of

forgetting to recompile changed modules.

1. Select Promote from the SCLM Main Menu.

2. On the Promote panel, type:

 DEV2 in the “From group” field

ARCHDEF in the Type field

FLM01AP1 in the Member field

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

Press Enter.

SCLM issues date and time mismatch error messages because the FLM01EQU

source has been updated and the modules that use it have not been recompiled by

the build operation. Promote sends a return code of 8 because the date and time

mismatch prevented it from copying anything to the next group.

Rebuilding the Changed Member

This section illustrates a successful build operation. Because all members are not

affected by the change to the FLM01EQU member, only the members containing

FLM01EQU are recompiled and linked. SCLM processes project components

efficiently by recompiling and relinking only those modules that were altered since

the last build operation.

1. Select Build from the SCLM Main Menu and press Enter.

Chapter 10. Development Scenario 261

2. On the Build panel, type:

 DEV2 in the Group field

ARCHDEF in the Type field

FLM01AP1 in the Member field

1 in the Mode field

2 in the Scope field

1 in the Messages field

1 in the Report field

3 in the Listings field

Press Enter.

Note the traversal of the architecture. FLM01MD2 was not affected by the

change to the FLM01EQU member and will not be recompiled. FLM01LD2,

which contains only FLM01MD2, will not be relinked.

3. Verify that the build completed successfully (RETURN CODE = 0). If the return

code is not zero, check the listing, correct the errors, and try again.

Using the Database Contents Utility

This section illustrates use of the database contents utility to verify that the

compilations and links were performed.

1. Select the Utilities option from the SCLM Main Menu.

Select the Database Contents Utility option from the SCLM Utilities Menu.

2. On the Database Contents Utility panel, type:

 DEV2 TEST

RELEASE

in the Group fields

SOURCE in the Type field

* in the Member field

/ in the “Change additional selection criteria” field

1 in the Messages field

1 in the Report field

3 in the “Tailored output” field

Press Enter. The Additional Selection Criteria panel appears.

3. On the SCLM Database Contents - Additional Selection Criteria panel, type *

for the “Authorization code”, “Change code”, “Change group”, “Change user

id”, and Language fields. Do not select the “First occurrence only” field.

Type:

 1 in the “Data type” field

3 in the “Architecture control” field

1 in the Scope field

These are the default values.

Press Enter. The Customization Parameters panel appears.

4. On the Customization Parameters panel, select the “Page headers” and “Show

totals” fields, and enter Statistics Report for the “Report name” field. Type

@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS

@@FLMNCS for the “Report line format” field after the prompt.

Put at least 2 spaces between each @@FLMxxx variable. This can wrap to the

next line; this field accepts up to 160 characters. These are the default values.

Press Enter to execute the database contents utility report.

262 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note that only FLM01EQU is in the DEV2 group. The Database Contents

Utility panel reappears.

5. On the Database Contents Utility panel, type:

 DEV2 TEST

RELEASE

in the Group fields

OBJ in the Type field

Do not select the “Change additional selection criteria” field.

Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01MD2 does not appear in the DEV2 group. FLM01MD2 was not

affected by the changes to FLM01EQU.

6. On the Database Contents Utility panel, type:

 DEV2 TEST

RELEASE

in the Group fields

LMAP in the Type field

Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01LD2 does not appear in the DEV2 group. FLM01LD2 was not

affected by the changes to FLM01EQU.

7. On the Database Contents Utility panel, type:

 DEV2 TEST

RELEASE

in the Group fields

LOAD in the Type field

Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01LD2 does not appear in the DEV2 group. FLM01MD2 was not

affected by the changes to FLM01EQU.

Promoting a Member Successfully

This section illustrates a successful promote operation. The FLM01EQU member is

moved from the DEV2 group to the TEST group.

1. Select the Promote option from the SCLM Main Menu, and press Enter.

2. On the Promote panel, type:

 DEV2 in the “From group” field

ARCHDEF in the Type field

FLM01AP1 in the Member field

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

Press Enter.

3. Verify that the promote completed successfully (RETURN CODE = 0). If the

return code is not zero, check the messages, correct the errors, and try again.

When the Promote panel reappears, press the End key to return to the SCLM

Main Menu.

4. Select the Utilities option from the SCLM Main Menu.

Select Database Contents Utility from the SCLM Utilities Menu. On the

Database Contents Utility panel, type:

Chapter 10. Development Scenario 263

DEV2 TEST

RELEASE

in the Group fields

* in the Type field

FLM01EQU in the Member field

1 in the Messages field

1 in the Report field

4 in the “Tailored output” field

Do not select the “Change additional selection criteria” field.

Press Enter. The Database Contents Utility panel reappears.

5. On the Database Contents Utility panel, type:

 DEV2 TEST

RELEASE

in the Group fields

SOURCE in the Type field

* in the Member field

/ in the “Change additional selection criteria” field

1 in the Messages field

1 in the Report field

4 in the “Tailored output” field

Press Enter. The Additional Selection Criteria panel is displayed.

Type FIX01 in the “Change code” field. Press Enter again. Only FLM01EQU

should be found, and it should only be found at TEST. The Database Contents

Utility panel reappears.

6. Return to the SCLM Main Menu by pressing the End key twice.

Drawing Down a Promoted Member

This section illustrates that a promoted member is available and can be edited by

other developers.

1. Specify Edit from the SCLM Main Menu, PROJ1 in the Project field, and DEV1 in

the Group field.

2. Edit the FLM01EQU member, by specifying SOURCE in the Type field and

FLM01EQU in the Member field. However, do not make any changes to the

member. Note that FLM01EQU is no longer locked by SCLM.

Performing Project Housekeeping Activities

After you complete the development activities described in this chapter, be sure to

perform any cleanup or housekeeping activities in preparation for the next project

operations. You can clean up the sample project hierarchy by performing a

promote operation using group TEST, type ARCHDEF, and member FLM01AP1.

This restores the hierarchy to its original state so that others can use it to execute

this scenario. If you made other changes (such as a change to the FLM01EQU

member in the last activity), you might need to perform additional build and

promote operations.

You can also delete the tso-prefix.BUILD.LISTnn and tso-prefix.DBUTIL.CMDnn data

sets created during the preceding SCLM Build process.

264 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 11. Architecture Definition

An architecture definition describes the configuration of an application under

SCLM control and how it is to be constructed and integrated. Architecture

definitions are created and updated by the developers and describe the architecture

of an application. They provide specifications to the Build function for data

generation, and to the Promote function for the movement of data from one group

to another. Architecture definitions can reference other architecture definitions, thus

providing a simple building block tool for complex application definitions.

v Data Generation

Architecture definitions can specify the following information to the build

function:

– Where inputs to translators (for example, compilers) are to come from

– Where outputs from translators are to be stored

– What parameters are needed by a translator

A single architecture definition can specify all the data generation to occur for a

large, complex application simply by referencing other architecture definitions.

v Data Movement

All data that is directly or indirectly referenced by an architecture definition is

promoted when that architecture definition is promoted. This encompasses

included architecture definitions, along with the system components they

describe. Thus, specifying a single high-level architecture definition for

promotion can cause an entire application to be promoted.

This chapter discusses the methods you can use to define the architecture, provides

several different examples of architecture members, and explains the use of

architecture member statements.

Architecture Members

Architecture members define the application at a high level by referencing lower

level architecture members. You can generate them top down or bottom up, using

an iterative approach. Create architecture members by using the edit function.

The capability to define an architecture allows you to control and track any

discrete division of an application from the most encompassing definition down to

the individual component. You can maintain the architecture members in a

separate type in the project data base. Use the architecture members to describe the

different versions or variations of a project or application.

Kinds of Architecture Members

SCLM provides four kinds of architecture members that you can use to generate an

architecture definition for an application. They are compilation control (CC),

linkedit control (LEC), high-level (HL), and generic.

Each kind of architecture member controls a different kind of component that

SCLM processes. Table 17 on page 266 categorizes the use of each kind of

architecture member.

© Copyright IBM Corp. 1990, 2005 265

Table 17. Uses of Architecture Members

Architecture Member Use

Compilation Control (CC) Define compiler processed components.

Linkedit Control (LEC) Define link-edit processed components.

High-Level (HL) Define application and subapplication components.

Generic Define specially processed components.

Each of these uses is described in the following pages. See “Sample Application

Using Architecture Definitions” on page 279 for an example of an application

consisting of architecture members.

Defining Compiler Processed Components

Standard compilers produce object modules as output. SCLM can be used to create

object modules by using either a Compilation Control (CC) architecture member or

a compilable source member as input to the build function. The following

discusses both methods for producing object modules.

Compilation Control Architecture Members

One method of creating object modules is through a Compilation Control (CC)

architecture definition.

CC architecture definitions contain all the information necessary to produce and

track software components with object module output. Use CC architecture

definitions to provide the following:

v The inputs to the compiler and other translators

v The outputs of the compiler and other translators

v Compiler options.

To directly identify an input to the compiler, use the SINC statement. If the input is

generated from another member in the project, use the INCL and INCLD

statements along with the KREF statement. The INCL and INCLD statements

identify members built before compiling this member. The KREF statement

identifies which outputs of the members on the INCL and INCLD statements are

inputs.

CC architecture members must have at least one SINC statement and one OBJ

statement. See “Architecture Statements” on page 272 for more information.

Members included by compiler include statements such as COPY are not identified

in architecture members. SCLM obtains the list of included members from a parser

that is run when a member is stored into SCLM and when members are updated.

The information about the parser, the compiler, and include libraries outside the

project is specified in a language definition. The language of a member must be

identified to SCLM when a member is added to an SCLM project. The language of

a member can be changed.

The ddnames used by the compiler are specified in the language definition by

FLMALLOC macros. The types of ddnames are identified by different IOTYPEs.

An IOTYPE of S identifies the input stream for the compiler. The input stream has

two formats. One, identified by KEYREF=SINC, is a sequential work file that

contains all of the inputs to the compiler concatenated together. The other,

266 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

identified by KEYREF=INCL, is a sequential work file that contains INCLUDE

statements for each of the input members. The format of the INCLUDE statement

is INCLUDE DDNAME(MEMBER). The DDNAME will be a ddname dynamically allocated

by SCLM. If multiple inputs are identified, they are concatenated in the order

specified in the architecture member.

You can add information to the input stream passed to the compiler by using the

CMD statement. The CMD statement can be used to add compiler directives, force

titles, or control listings based on the commands supported by the compiler in the

input stream.

You can append translator options to the options specified in the language

definition by using the PARM statement. Use the statement as many times as

necessary to specify all options you want (up to a string length of 512 characters).

You can pass parameters directly to specific build translators defined in the

language definition by using the PARMx statement, coupled with the use of the

PARMKWD parameter of the FLMTRNSL macro.

SCLM orders compiles to ensure that outputs (such as DB2 DBRMs) are produced

before compiling the member that references them. SCLM orders compiles that are

within the scope of the build. (See “Build (Option 4)” on page 236 for more

information.)

SCLM allows you to track and maintain all forms of generated data. Often, due to

space limitations, you do not want to save it all. SCLM gives you the option of

saving listings in the database or discarding them. Therefore, the architecture

member statement LIST is optional. SCLM can generate listings for viewing after a

build.

Specifying Source Members

Specifying a compilable source member to the build function is the alternate

method of creating object modules. The language definition of the source member

from the project definition determines which translators are called and where

outputs are saved during the build. Compiler parameters can only be overridden

by creating a CC architecture member.

Defining Link-Edit Processed Components

Standard linkage editors produce load modules as output. To define software

components with load module outputs from standard linkage editors, use Linkedit

Control (LEC) architecture members. LEC architecture members contain all the

information necessary to produce a complete load module. Use the LEC

architecture member to identify the following:

v The load module name and the type in which you want it saved

v The linkage editor listing name and the type in which you want it saved

v All object and other load modules the load module is to contain

v Linkedit control statements and linkage editor options.

LEC architecture members must have at least one LINK, INCL, INCLD, or SINC

statement and one LOAD statement.

Linkedit Control (LEC) architecture members can be constructed by referencing

any combination of source members, CC architecture members, generic architecture

members or LEC architecture members. Inputs to LEC architecture members are

identified in the same way that inputs to CC architecture members are identified.

Chapter 11. Architecture Definition 267

The one difference is that by default LEC architecture members include object and

load modules generated by the OBJ and LOAD statements in the input stream to

the linkage editor. SINC statements can be used in LEC architecture members to

identify object modules or load modules which are generated outside of the

project. If SINC statements are being used to include load modules, the input

ddname for the build translator must specify KEYREF=INCL. One additional

statement can be used in LEC architecture members to identify an input to the

linkage editor. That statement is the LINK statement. It identifies an output in the

project that does not need to be rebuilt before being included in the input stream.

SCLM verifies that the inputs to the LEC architecture member are up-to-date

before link-editing the inputs. SCLM will rebuild any inputs that are outputs of

building other members in the project when those outputs are out-of-date. The

inputs specified on LINK statements are an exception. These inputs will not be

rebuilt.

You can override default linkage editor options by using the PARM statement. Use

the statement as many times as necessary to specify all options you want. SCLM

uses the standard S/370 linkage editor as defined by the LE370 language definition

unless an LKED statement is used to override the default. See page 276 for more

information.

You can specify in the LEC that SCLM pass linkage edit control statements directly

to the linkage editor by using the CMD statement. Insert the control statements

along with the object and load modules by careful positioning in the LEC

architecture member.

The CMD statement can be used to include object modules and load modules that

are in data sets outside of the project. The language definition for the linkage

editor must include a ddname referencing the data set containing the members to

include.

Because of space limitations, you might not want online linkage editor listings.

SCLM allows you to save listings in the database or discard them. Therefore, the

architecture member statement LMAP is optional. Nonetheless, SCLM generates

listings to temporary listing data sets for your viewing during the build.

You cannot use the SETSSI linkage editor command in an LEC architecture

member. If SCLM finds a CMD SETSSI statement in an LEC architecture member

during a build, the build function overrides the statement with its own SETSSI

command.

SCLM Build and Control Timestamps

SCLM uses the System Status Index field to signify that the last update of a load

module was made through SCLM. The SSI field data that SCLM generates consists

of the following: the most significant bit is defined as a flag; the next most

significant 11 bits specify hour and minute in binary form; and the least significant

20 bits specify Julian date in packed decimal form. SCLM sets the flag bit and

writes these items into the SSI field during build processing when it generates a

load module.

 Table 18. SCLM System Status Index Field Data

Bit Definition Form

0 flag bit

268 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 18. SCLM System Status Index Field Data (continued)

Bit Definition Form

1-5 hour binary

6-11 minute binary

12-31 Julian date packed decimal

Defining Application and Subapplication Components

You can define applications and subapplications by using High-Level (HL)

architecture members. HL architecture members allow you to categorize groups of

related load modules, object modules, and other software.

You can maintain one HL architecture member to define an entire application for a

project. This HL architecture member references other architecture members that

eventually reference every component in the application. It can also reference the

source directly, with the language of the source defining the outputs to be

produced. By using this HL architecture definition as input to the build or Promote

functions you can ensure that the entire application is up to date or is promoted to

the next group in the project hierarchy. A build or promote of an HL architecture

member results in the building or promotion of every software component

referenced. In this way, you can guarantee the integrity of an entire application.

You can also use an HL architecture member to define subapplication software

components. Subapplications can be a combination of load modules or merely a

list of internal data items to be controlled. Subapplications can, in turn, reference

other subapplications to any depth. Conscientious use of HL architecture members

contributes to application modularity.

SCLM can control and track ISPF panels, skeletons, and messages that are not

processed by a compiler or linkage editor or used to invoke processors. Because

these unique forms of software are not processed by compilers, linkage editors, or

other processors, they are considered data dependencies and, therefore, can be

controlled by using the PROM statement.

In most cases, you do not want panel, skeleton, and message dependencies in LEC,

CC, and generic architecture members. Use HL architecture members to control all

dialog software. For example, you can use one HL architecture member for panels,

one for skeletons, one for messages, and one for the entire dialog that references

the three previous HL architecture members.

The PROM statement date_check parameter allows SCLM to bypass date checking

for the referenced member, thereby eliminating the need to build before promoting

when that member is modified. Careful use of the PROM statement in this manner

can eliminate unnecessary SCLM processing and improve efficiency.

Generic Architecture Members

Generic architecture members are used to process members that do not generate

object modules. Examples of the outputs that might be produced are

documentation and panels. Generic architecture members are almost the same as

Compilation Control (CC) architecture members. The difference is that generic

architecture members cannot generate object modules using the OBJ statement. If

an OBJ statement is added to a Generic architecture member it becomes a CC

Chapter 11. Architecture Definition 269

architecture member. Other output statements such as LIST and OUT1 are used in

generic architecture members to identify the listings, documentation, panels or

other outputs produced.

Build and Promote by Change Code

You can also use architecture definitions to identify the parts associated with a

specific change or group of changes. This can be done in any architecture member

using the CCODE statement. In addition to the normal contents of an architecture

definition, such an architecture member contains a list of CCODE keywords

followed by a change code and include flag. An example of such an architecture

definition follows:

 * ARCHDEF FOR PACKAGE PKG00001

 CCODE POY66045 INCLUDE * Include changes for problem POY66045

 CCODE POY66615 INCL * Include changes for problem POY66615

 INCL SCLM ARCHDEF * SCLM ARCHDEF

There are no SCLM-enforced conventions for change codes. The only restriction is

that it be a maximum of 8 characters. For SCLM to determine the change code, any

change code that contains an embedded blank or whose first character is other

than A-Z, 0-9, @, # or $ must be enclosed in delimiters. A delimiter can be any

character not specified above. Following are some examples:

 CCODE A * this includes change code A

 CCODE ,A B C, E * this excludes change code A B C

 CCODE /AB/ IN * this includes change code AB

 CCODE ’A B’ EX * this excludes change code A B

 CCODE 1" EXCLUDE * this excludes change code 1"

Valid values for the include flag are INCLUDE or EXCLUDE. The default value is

INCLUDE. A value of INCLUDE indicates that only the changes specified are

included. A value of EXCLUDE indicates that everything except the specified

changes are included. The following table illustrates the conditions under which

SCLM will build and promote by change code.

 MEMBER CHANGE CODE CCODE CCODEX INCLUDE CCODE CCODEX EXCLUDE

CCODEX Yes No

CCODEY No Yes

no change code No Yes

Multiple CCODE statements can be specified in an architecture definition. An error

message is issued when the include flag value is not the same on all statements.

Duplicate CCODE statements are ignored. Any CCODE statements whose change

code and include flag resolve to the same value are considered duplicates. For

example, the following CCODE statements are duplicates:

 CCODE 1

 CCODE ’1 ’ INCLUDE

CCODE and COPY keywords cannot be used in the same architecture definition.

Because the COPY keyword causes an actual copy of an architecture definition to

be inserted into the first, the architecture definition referenced by the COPY

statement must also be free of CCODE statements. To build an architecture

definition containing COPY statements by change code, create a new architecture

definition that contains the CCODE statement and an include (INCL) of the

original architecture definition.

270 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The concept of a package (group of changes) is supported through the ability to

specify multiple CCODE keywords in an architecture definition. To more easily

identify and maintain these architecture definitions, you can define a TYPE called

PACKAGE with a language of ARCHDEF and use the package identifier or change

code as the name for each member name. Or you can define a single architecture

member and update the change code values in that member for each new build or

promote by change code.

Only those CCODE statements that appear in the architecture definition specified

as input to the build or promote will be processed. All other CCODE statements

will be ignored. For example, assume that you have architecture definitions ISPF,

PDF, SCLM and ISPFSUB. The architecture definitions contain the following

statements:

 When the ISPF architecture definition is built, only members with the change code

A will be included from the build group. The CCODE statements to include

change codes B, C, and D will not be processed for this build because they were

found in included architecture definitions.

During the verification phase of build and promote, SCLM will search the change

code list for members in the build or promote scope at the specified group. If the

member is in scope and the change code appears (or does not appear in the case

where EXCLUDE is specified) on the change code list, it will be included.

Otherwise, SCLM will continue to search for the member beginning at the next

group. Change codes will be processed for all editable members stored in PDS data

sets under SCLM control, including architecture definitions. Change codes will be

processed on included members when their data sets are allocated with IOTYPE=I,

KEYREF=SINC. Included members whose data sets are allocated with a KEYREF

of SREF or CREF will not be processed by change code. To process includes

referenced by SREF and CREF allocations:

1. Add FLMINCLS macros to reference the desired types.

2. Change the FLMALLOC macros to use KEYREF=SINC.

3. Add an INCLS parameter to the FLMALLOC macros to reference the

FLMINCLS macros.

The architecture definition specified as input to the build or promote will always

be processed, regardless of its change codes. Change codes are only significant for

the build or promote group. In scope members found above this group will be

included regardless of change code. If the specified change appears on a member’s

change code list but is not the last change and INCLUDE is specified, a warning

message will be issued.

We recommend you build and promote each change to a member before beginning

another. In cases where this is not possible, multiple changes that affect a single

 * ARCHITECTURE DEFINITION MEMBER ISPF

 INCL ISPFSUB ARCHDEF

 INCL PDF ARCHDEF

 INCL SCLM ARCHDEF

 CCODE A INCLUDE

 * ARCHITECTURE DEFINITION MEMBER ISPFSUB

 CCODE D INCLUDE

 * ARCHITECTURE DEFINITION MEMBER PDF

 CCODE B INCLUDE

 * ARCHITECTURE DEFINITION MEMBER SCLM

 CCODE C INCLUDE

Chapter 11. Architecture Definition 271

member should be built or promoted together. For instance, assume that you have

members A, B, and C. Change 1 affects members A and B while change 2 affects

members A and C. As both changes affect member A, the inclusion of either

change without the other will cause the changes to be unsynchronized. Change

codes 1 and 2 should be built and promoted together.

To build an application containing dynamic includes by change code, a build

without change codes must occur first. Otherwise, the build can fail because

includes are missing.

A promote by change code must always be preceded by a successful build of the

same architecture definition. At the completion of a promote by change code,

rebuild the application at the higher group. Change codes are used to determine

whether a member found at the report input group will be included in the

Architecture Report when executing the Architecture Report Utility against an

architecture definition containing CCODE statements. The Database Contents

Utility, on the other hand, does not use change codes specified on CCODE

statements to determine whether a member will appear in the report or tailored

output.

Architecture Statements

You must use a special SCLM architecture language when you create architecture

members. This language consists of statements that identify necessary information.

The following paragraphs discuss the statements and their formats.

Statement Format

You must use a specific format for architecture members. Architecture definition

data sets must be fixed block (FB) with a length of 80 bytes or characters. Only one

statement can appear in each 80-byte record. A record ranges from columns 1

through 72, and the records cannot be continued. SCLM ignores information that

appears after column 72.

Write the statements in either upper- or lowercase. You can write all statements,

except for CMD, PARM, and PARMx statements, in a free format as long as the

items within the statements are in the correct order. The number of blank spaces

between each item is not significant (except in the CMD statement).

The order of statements is generally not significant. For example, you can place

OBJ statements before or after SINC statements. The only statements for which the

order is significant are those keywords that cause data to be concatenated into the

input stream (INCL, INCLD, CMD and LINK for LEC architecture members; SINC

and CMD for CC and generic architecture members); or into the translator options

(PARM and PARMx).

Member and type names must follow MVS naming conventions. SCLM does not

check parameters and control statements for validity. They can continue up to and

including column 72.

All members explicitly referenced by an architecture statement MUST exist in the

type specified in the architecture statement. However, SCLM uses extended types

and include sets to resolve the parsed dependencies of members referenced by a

SINC statement if necessary.

272 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Statement Uses

SCLM distinguishes architecture members from one another by their content.

SCLM assumes, for example, that a member containing both an OBJ statement and

a SINC statement is a CC architecture member, and that a member containing a

LOAD statement is an LEC architecture member.

Architecture statements provide information about the design of applications in the

project database.

Table 19 shows valid statements for each type of member.

 Table 19. Valid Keywords for Architecture Member Statements

HL LEC CC Generic

* * * *

CCODE ALIAS CCODE CCODE

COPY CCODE CMD CMD

INCL CMD COPY COPY

INCLD COPY INCL INCL

PROM INCL (2) INCLD INCLD

 INCLD (2) KREF KREF

 KREF LINK LINK

 LINK (2) LIST LIST

 LKED LKED LKED

 LMAP OBJ (1) OUTx

 LOAD (1) OUTx PARM

 OUTx PARM PARMx

 PARM PARMx PROM

 PARMx PROM SINC(1)

 PROM SINC(1) SREF

 SINC (2) SREF

 SREF

1: Each of the following statements must be present in the architecture definition member:

v An LEC member must contain exactly one LOAD statement

v A CC member must contain exactly one OBJ statement and at least one SINC statement

v A Generic member must contain at least one SINC statement.

2: An LEC member must contain at least one of the following statements: INCL, INCLD, LINK, or

SINC.

Each architecture statement is composed of a keyword followed by one or more

operands. For those keywords that allow you to specify either a member name or

an asterisk (*), specify an asterisk if you expect multiple outputs per DD statement.

Otherwise, specify the member name if only a single output is expected. The

following list shows the valid statements, their usage, and their format:

* Identifies an architecture comment statement on a line by itself.

* <comment>

ALIAS Identifies load module aliases to be generated. Use it only in LEC

architecture members. The type_name specified on the ALIAS

statement must be the same as the type_name on the LOAD

statement of the LEC architecture member.

ALIAS <member_name> <type_name> <optional_comment>

Chapter 11. Architecture Definition 273

CCODE Identifies a change code to be included or excluded from a build or

promote.

 Any change code that contains an embedded blank or whose first

character is other than A-Z, 0-9, @, # or $ must be enclosed in

delimiters. A delimiter can be any character not specified above.

 Valid values for the include flag are INCLUDE and EXCLUDE. The

flag can be abbreviated but must be followed by a space. If no

value is specified, the default is INCLUDE. Examples of valid flags

are I, E, IN, EX, INCL, and EXCL.

CCODE change_code <optional_include_flag> <optional_comment>

CMD Identifies command statements to be included with inputs to the

compiler, linkage editor, or other processors. SCLM strips off the

CMD keyword and the first blank of this statement, then passes

the remaining columns (4–80) as columns 1–77 directly to the

processor’s input stream. No further formatting, substitution or

other interpretation is performed on the statement. Thus,

consideration must be given to how the invoked processor

interprets input statements when coding a CMD statement.

 For example, the linkage editor expects at least one blank at the

beginning of a statement (but not more than 15) before the

operation code. The linkage editor also expects at least one blank

between that and the operand and everything following the first

blank after an operand is a comment. The exception is column 72,

which is the statement continuation character. Therefore, CMD

statements coded in an LE ARCHDEF must have at least 2 (but no

more than 16) blanks between the CMD keyword and the

operation code, and that column 75 must be blank, unless a

continuation to the next CMD statement is desired.

 Do not include the optional_comment with the CMD statement

because it will be part of the control statement.The CMD statement

is not valid in HL architectural members.

CMD <control_statement>

CMD PARMS /Ss /DIPF

CMD ACTION IPFCP

The FLMLTWST translator reads the build map for ACTION and

PARMS control statements. ACTION may be used for additional

workstation commands. PARMS may be used to identify strings to

be added to the workstation command. These control statements

are different than the ACTION and PARMS keywords that may be

used in the OPTIONS list for FLMLTWST. The PARMS value in the

OPTIONS list is added to all workstation commands whereas the

string following the PARMS control statement in the build map is

appended to the workstation command being created at that time.

See the z/OS ISPF Software Configuration and Library Manager

Reference for additional information.

Note: CMD statements in an architecture definition will be placed

in the build map with the control statement. The control

statement will only be passed to the build translator in the

controlling language definition if there is also an

FLMALLOC macro with IOTYPE=S. Translators used for

274 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

workstation build may read the control statement from the

build map to create a workstation command.

COPY Identifies another architecture member to be inserted into this

architecture member.

 The COPY statement of the architecture language provides you

with the ability to simplify related, complex architecture members.

To simplify architecture members with similar contents, use the

COPY statement to isolate identical statements into a separate

member and reference the member. Referenced members must

follow all formatting rules for architecture members.

 The COPY statement results in a direct insert of the contents of the

specified member into the respective architecture members.

Therefore, using a copy architecture member is an efficient way to

group sets of commonly used architecture statements into a single

area. Additions to and deletions from the common architecture

member affect all the architecture members referencing the

member.

COPY <member_name> <type_name> <optional_comment>

Note: Use the COPY statement rather than the INCL statement

(see the following description) when the specified member

cannot be processed independently from the architecture

definition in which it appears.

INCL Identifies another architecture member that this architecture

member references. The referenced architecture member will be

processed before this architecture member.

 Additionally, if INCL is used in an LEC architecture member, the

output from the INCL is used to create the load module for the

LEC.

 Only CC and LEC architecture members should be referenced by

an INCL statement in another LEC architecture member. For CC

architecture members, the output referenced by the OBJ keyword is

used to create the load module; for LEC architecture members, the

output referenced by the LOAD is used.

INCL <member_name> <type_name> <optional_comment>

Note: Use the INCL statement rather than the COPY statement

(see the previous description) when the specified member

can be processed independently from the architecture

definition in which it appears.

INCLD Identifies a source member that this architecture member

references. The referenced member will be processed before this

architecture member.

 Additionally, if INCLD is used in an LEC architecture member, the

output from the INCLD is used to create the load module for the

LEC. The language definition for the member referenced by the

INCLD statement must have a build output with KEYREF=OBJ.

INCLD <member_name> <type_name> <optional_comment>

KREF Identifies the output keywords from other members that will

become inputs to the member containing the KREF statement. The

keywords identified by the KREF statement must be architecture

Chapter 11. Architecture Definition 275

statements that identify outputs of a build. Examples are OBJ,

LOAD and OUT1. Only those outputs of members referenced by

INCL or INCLD statements in the architecture member containing

the KREF statement will be considered for inclusion.

 If the KREF statement is omitted, the outputs that are included

depend on the type of architecture definition. For LEC architecture

definitions, the default is to include OBJ and LOAD outputs. For

all other types of architecture definitions, the default is not to

include any outputs produced by referenced members.

 If a KREF statement is specified in an LEC architecture definition,

the defaults of OBJ and LOAD will be lost. To include another

output type in addition to OBJ and LOAD, three KREF statements

must be specified: one for OBJ, one for LOAD, and one for the

additional output type (OUT1 for example).

 Valid reference keywords are: COMP, LIST, LMAP, LOAD, OBJ,

and OUTx.

KREF <reference_keyword>

Note: Although multiple KREF statements can be coded in a single

LEC architecture member, duplicate KREF statements will

result in an error.

LINK Identifies an output that must be produced before this ARCHDEF

is processed. The build function only verifies the contents of the

output referenced if extended scope is specified. You can substitute

the INCL statement to cause this verification to always be

performed.

 Additionally, if LINK is used in an LEC architecture member, the

output referenced is used to create the load module for the LEC.

LINK <member_name> <type_name> <optional_comment>

LIST Identifies the members and type in which the compiler listing is to

reside. The LIST statement is not valid in HL or LEC architecture

members.

LIST <member_name | *> <type_name> <optional_comment>

LKED Identifies the language to be used to process the contents of the

architecture member.

 Language_id is an 8-character language identifier for a translator.

The language ID specified must correspond to a valid language

identifier defined in the project definition.

 If the LKED keyword is omitted, SCLM uses the default language

to process the architecture member. For LEC architecture members

the default language is LE370. For CC and Generic architecture

members the default language is the language of the member on

the first SINC statement.

LKED <language_id> <optional_comment>

LMAP Identifies the members and type in which the linkage editor listing

(load map) is to reside. Use it only in LEC architecture members.

LMAP <member_name | *> <type_name> <optional_comment>

LOAD Identifies the load modules to be created and the type in which the

load moduless reside. Use it only in LEC architecture members.

276 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

LOAD <member_name> <type_name> <optional_comment>

OBJ Identifies the name of the object modules to be created and the

type in which the modules reside. Use it only in CC architecture

members.

OBJ <member_name | *> <type_name> <optional_comment>

OUTx Identifies the output members to be created and the type in which

the members reside. Replace the x with an integer to identify the

specific statement. Valid integer replacements are 0 through 9. You

can use these statements to track additional outputs other than the

standard outputs described by the statements OBJ, COMP, LIST,

LOAD, and LMAP. Use the OUTx statement in an LEC, CC, or

generic architecture member.

OUTx <member_name | *> <type_name> <optional_comment>

PARM Identifies parameters (options) to be passed to all build translators

of a compiler, linkage editor, or other processor. Use it in generic,

CC, or LEC architecture members. Do not use this keyword to pass

parameters to non-build translators such as VERIFY, PURGE, and

COPY.

 SCLM offers a set of variables that you can use to dynamically

provide information to compilers, linkage editors, and other

processors. Use these variables with the PARM statement.

 Do not use the optional_comment with the PARM statement

because it will be passed to the build translators.

PARM <parameters>

PARMx Identifies parameters (options) to be passed to build translators of

an SCLM language. Replace the x with an integer to identify the

specific statement. Valid integer replacements are 0 through 9. You

can use the SCLM variables, mentioned previously, with the

PARMx statement. You can use the PARMx statement in generic,

CC, and LEC architecture members. Do not use this keyword to

pass parameters to non-build translators such as VERIFY, PURGE,

and COPY.

 Do not use the optional_comment with the PARMx statement

because it will be passed to the build translators.

 If the PARMx keyword used in the architecture member is not

specified in one of the FLMTRNSL macros (using the PARMKWD

parameter), SCLM ignores the PARMx statement.

PARMx <parameters>

Notes:

1. The complete options list passed to the build translator has a

maximum length of 512 characters and has the following

format:

 string1

 ,string2

 ,string3

where

string1 contains the options from the OPTIONS

parameter on the FLMTRNSL macro.

string2 contains the options from the PARM statements

Chapter 11. Architecture Definition 277

in the architecture definition. No commas are

inserted between PARM statements.

string3 contains the options from the PARMx

statements in the architecture definition.

Commas are inserted between PARMx

statements.

Leading and trailing blanks are removed by SCLM.

For example, suppose that the FLMTRNSL macro specifies that

the following options are to be passed to a translator:

OPTIONS=(NOXREF)

Further suppose that there is an architecture definition for the

translator with the following parameters defined:

PARM PARAMETER1

PARM PARAMETER2

PARM PARAMETER3

PARM1 PARAMETER4

PARM2 PARAMETER5

PARM3 PARAMETER6

The options passed to the translator would look like this:

NOXREF,PARAMETER1PARAMETER2PARAMETER3,PARAMETER4,PARAMETER5,PARAMETER6

2. Parameters specified on the PARM and PARMx statements in

an LEC architecture member are passed to the linkage edit

translator but not to any of the compilations needed to produce

object or load modules for the linkage edit operation.

3. You should review the documentation of each build translator

for unique handling requirements of passed parameters (for

example, case and handling of special characters).

PROM Identifies a text member, such as design, data, or test plans, to be

promoted along with the modules processed in this architecture

member. The member specified is not processed by build (for

example, compiled or linked) but is tracked during promotions.

You can specify an additional parameter to indicate whether date

checking is to be performed for the member.

 Date_check is a special optional parameter for the PROM statement

to bypass date checking for noncompilable/nonlinkable members.

A nonblank character, such as N, as a third parameter on the

PROM statement indicates to the build and promote functions to

bypass date checking for that member (thereby eliminating the

need to build before promoting) when you modify the member.

Note: Do not use the optional_comment with the PROM statement

because it can cause build and promote to bypass date

checking.

PROM <member_name> <type_name> <date_check>

SINC When used in generic and CC architecture members, the SINC

statement identifies the source member. When used in an LEC

architecture member, the SINC statement identifies the member or

group of members to pass to the linkage edit translator. Use it only

in generic, CC, and LEC architecture members.

SINC <member_name> <type_name> <optional_comment>

278 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

You can specify multiple SINC statements in an architecture

definition. SCLM copies each statement, in the order they appear,

into the temporary file allocated with FLMALLOC IOTYPE=S.

Notes:

1. The input list feature of the Build function is designed to work

with direct translations of source members only (source

members referenced with an INCLD statement). Using the

input list feature with source members controlled by CC or

Generic architecture definitions produces undefined results

(source members referenced with a SINC statement). For more

information about Input List languages and translators, see

Part 1 of this document.

2. If there is a SINC statement, but no FLMALLOC with

IOTYPE=S, in the language definition for the language of the

member referenced by the SINC statement, the referenced

member is not placed on the SYSIN input stream for the build.

SREF Identifies a type to be allocated during processing. Specifically, use

the SREF keyword to allocate a specific type for translators. You

can use it in generic, CC, and LEC architecture members.

 SREF is a function that identifies an additional type to be allocated

during processing. Do not use this function unless you have

extremely complex hierarchical concatenation needs.

SREF <type_name> <optional_comment>

Sample Application Using Architecture Definitions

The following application is composed of two subapplications. Each subapplication

consists of two load modules, that are composed of a series of object modules.

Load module FLM01LD1 and FLM01LD2 contain one object module each, while

FLM01LD3 and FLM01LD4 contain multiple object modules. Figure 115 on page

280 shows a diagram of the design of this application (FLM01AP1) and Figure 116

on page 281 shows the architecture members for the FLM01AP1 application.

Note: SCLM tracks the included members; therefore, there is no need to mention

FLM01EQU in the architecture definition.

Chapter 11. Architecture Definition 279

Figure 115. Application FLM01AP1

280 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Figure 116. Architecture Members for Application Sample FLM01AP1 (Part 1 of 2)

Chapter 11. Architecture Definition 281

The HL architecture member in part 1 of Figure 116 includes references to two

subapplications: (FLM01SB1 and FLM01SB2). The subapplication HL architecture

members reference the LEC architecture members that define the load modules

they contain. Note that the referenced LEC architecture members have the same

names as the load modules they produce.

The LEC architecture members contain all the information necessary to produce

the load modules in the application. Two PARM statements in FLM01LD1 override

the default linkage editor options.

Load modules FLM01LD3 and FLM01LD4 contain copy statements. These

statements identify the architecture member FLM01ARH, that references two

source modules for SCLM to insert into the FLM01LD3 and FLM01LD4 load

modules.

Thus, copy architecture members are an efficient technique for grouping commonly

used architecture statements into a single member. Additions to and deletions from

FLM01ARH affect FLM01LD3 and FLM01LD4 and all the other architecture

members that might reference FLM01ARH.

Ensuring Synchronization with Architecture Definitions

SCLM ensures that all modules within the scope of a build are synchronized. If

you build a source module, SCLM synchronizes the resulting object and listing

with the source. If you build an architecture definition, SCLM synchronizes all

members used as input to the builds and all members output from the builds.

However, if there are object or load modules outside the scope of a particular build

that are dependent on source modules within the scope of that build, those source,

object, and load modules might no longer be synchronized.

In the following example, object modules OBJ1, OBJ2, and OBJ3 are produced by

compiling source modules SOURCE1, SOURCE2, and SOURCE3, respectively.

Figure 116. Architecture Members for Application Sample FLM01AP1 (Part 2 of 2)

282 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

SOURCE2 might be the source module for an I/O routine many applications use.

Load module LOAD1 is the result of linking OBJ1 and OBJ2, while LOAD2 results

from the link-edit of OBJ2 and OBJ3. LOAD1 and LOAD2 might be two separate

programs that run against the same kind of data and would therefore need to have

a common I/O routine (SOURCE2). FLM01AP1 and FLM01AP2 are LEC

architecture definitions that describe how to link-edit LOAD1 and LOAD2,

respectively. Finally, TOPARCH is a high-level architecture definition that includes

FLM01AP1 and FLM01AP2.

 In Figure 117, all of the modules shown in the diagram exist only in the production

layer of your SCLM-controlled hierarchy and all source, object and load modules

are synchronized. In other words, for each load module, the hierarchy contains the

exact version of the object modules that were used to link-edit that load module.

For each object module, the hierarchy contains the exact version of the source that

was compiled to create that object module. You can always recreate exactly (except

for time stamps) the object and load modules for the applications.

With this structure, you must pay close attention to which architecture definitions

you use to build and promote development changes. The following scenario

describes the INCORRECT use of architecture definitions, which leads to a loss of

synchronization between source and load.

A user puts in a request for a change to LOAD1 and you decide that the way to

implement that change is to modify SOURCE2. Because you are making a change

to LOAD1, you also decide (in error as it will turn out) to use FLM01AP1 to drive

your builds and promotes. When your changes are made and you are ready to

build, you cause SCLM to rebuild OBJ2 (because SOURCE2 changed) and LOAD1

(because OBJ2 changed), by specifying FLM01AP1 on the Build panel. LOAD2 is

not rebuilt, even though OBJ2 changed, because LOAD2 is outside of the scope of

architecture definition FLM01AP1. Herein lies the problem. When you promote

FLM01AP1, SCLM checks that everything that needs to be rebuilt (within the scope

of FLM01AP1) has been rebuilt. Unfortunately, modules outside the scope of

FLM01AP1 should be rebuilt as well.

When complete, all modules within the scope of FLM01AP1 are synchronized and

recreatable. However, LOAD2 was outside the scope of the architecture definition

you used and is not recreatable. Therefore LOAD2 is not synchronized with its

source.

Figure 117. Example of Synchronization

Chapter 11. Architecture Definition 283

To avoid this problem, you must analyze the architecture of the applications in

your SCLM-controlled project and choose an architecture definition with a scope

that contains all modules that need to be rebuilt. The correct architecture definition

would have been TOPARCH in the example because only TOPARCH has both

LOAD1 and LOAD2 within its scope. These modules have to be relinked because

of a change to SOURCE2.

It is strongly suggested that you have one high-level architecture definition with a

scope that includes every module controlled by an SCLM project. You can use

architecture definitions with much smaller scopes in your day-to-day development

work. However, if you do that, you should also check the synchronization of all

modules in the project by performing a build on the top high-level architecture

definition as part of your testing.

Build Outputs

Several architecture definition statements are used to identify the outputs of a

build. These statements are: ALIAS, COMP, LIST, LMAP, LOAD, OBJ, and OUTx.

These statements have two parameters. The first is the member name of the output

and the second is the type name of the output. The type name parameter must be

a type name from the project definition. The member name parameter can be

either a valid PDS member name or an ″*″. A PDS member name can be used

when there is a single output with a predefined member name. PDS member

names must be used for the ALIAS and LOAD architecture statements. An ″*″

must be used if there are multiple outputs or the output member name is not

predefined.

Build allocates temporary data sets to hold the outputs generated by the build

translators. If all the translators complete successfully the outputs from the

temporary data sets are copied into the SCLM hierarchy. Because the copy does not

take place until all translators have completed, the allocation of the output data

sets must be retained without overwriting the output until after the last translator

runs.

Multiple Build Outputs

Multiple output members may be generated for a single output keyword if the

IOTYPE on the FLMALLOC for the translator output is ″P″. This allows the

translator to store multiple members into a PDS data set. When a PDS member

name is specified on the output architecture statement SCLM will copy a member

with that name from the temporary data set into the SCLM hierarchy. The member

name in the temporary data set must match the SCLM member name. When an ″*″

is specified in the member name parameter then SCLM will copy all outputs in the

temporary data sets without changing the member names.

Sequential Build Outputs

A single build output may be generated into a sequential data set by using an

FLMALLOC with IOTYPE=O. When the output architecture statement indicates a

member name the output will be copied to an SCLM member of that name. When

an ″*″ is specified for the output member the member name will be the name of

the architecture definition.

Default Output Member Names

When a source member is built directly, either as the input member to the build or

by an INCLD statement, the output member name is determined from information

284 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

in the project definition or by SCLM defaults. If the FLMALLOC statement for the

output specifies a default member name using the DFLTMEM parameter then that

member name will be used. When no default member name is specified, the

output member name will be the same as the source member. Use an architecture

definition when generating multiple outputs to be stored in a partitioned data set.

See the description of “Multiple Build Outputs” on page 284.

Languages of Output Members

SCLM gets the language of the output member from one of two locations. The first

place SCLM looks is on the FLMALLOC statement in the project definition for a

LANG parameter. If it is found then it is used as the language of the output

member. When no LANG parameter is found and a source member is being built

the language of the source member is used as the language of the output member.

If an architecture definition is being built and no LANG parameter was found,

then the language used to build the architecture definition is used as the language

of the output member.

Chapter 11. Architecture Definition 285

286 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 12. Managing Complex Projects

This chapter describes additional SCLM features that you can use to define and

manage complex projects. Topics discussed in this chapter include:

v Impact assessment techniques

v Dependency processing implementation

v Propagating applications to other databases.

Impact Assessment Techniques

Making updates to a component of an application without full knowledge of their

effect on the application can cause a large number of unexpected recompilations.

Impact assessment is a technique you can use to assess the impacts of updates to

an application before they occur. It allows developers to determine what effect

changing a given component of the application has on the rest of the application or

a given subapplication. Impact assessment enables you to avoid time-consuming

recompilations.

Follow the procedure below to use SCLM Build to create an impact assessment:

1. Use the SCLM editor to save the members you want to change

a. in an empty development group or

b. save them with a change code.
2. Invoke the build function using the report mode on the top architecture

definition for the application affected. If you saved with a change code, create a

new top architecture definition that includes the old top architecture definition

and uses the CCODE keyword to include the change.

3. Examine the resulting build report. This report reflects all output that

regenerates when the build is performed. The build messages data set indicates

which translators are invoked.

4. If the results are acceptable, you can proceed with your planned changes.

Otherwise delete the members you saved in Step 1 using the SCLM Library

utility or the Delete from Group utility.

You can perform a second method of assessing impacts by using an SCLM

architecture report. Examine this report for the members that the developer wants

to modify. Starting with the members to be modified, you can identify all

architecture members that control the modified members. While this technique is

more meticulous than the first, it does not require that the member be drawn

down, modified, and built.

Either of the preceding techniques help identify costly recompilation impacts.

Dependency Processing

This section explains how SCLM handles include dependencies. If SCLM does not

provide a sample for a language you want to support, use this information to map

the language dependencies to SCLM dependencies.

SCLM derives dependency information when a member is parsed. This

information is stored as SCLM control data, and it allows SCLM to perform the

following functions:

© Copyright IBM Corp. 1990, 2005 287

|

v Process members in the correct order

v Determine when members are out-of-date (changed) and need to be rebuilt

v Determine the scope for functions such as build and promote.

The following describes the processing involved for each include dependency.

A member is included if it is required for completion of a compile of the member

that references it. Examples are members referenced by the %INCLUDE directive

in Pascal, the COPY operand in Assembler, the COPY command in COBOL, and

the imbed (.im) in Script. Assembler macros are also considered to be includes

because they must be expanded when the referencing member is assembled.

The primary input to the compiler defines the SCLM-controlled data sets to search

for includes. The primary input to the compiler is referenced directly on the build

panel or via the SINC or INCLD architecture definition keywords in SCLM. If

more than one SINC keyword is used in an architecture definition, the primary

input is the member referenced by the first SINC.

Any member can have include dependencies. SCLM recursively searches for

included members beginning with the primary input to find all of the

dependencies that are needed for the compilation.

The language of the primary input defines which types are searched to find

includes. The FLMINCLS macro is used to specify which types are searched and

the order in which they are searched. For more information about how includes are

found, see Part 1 of this document.

Included members can be editable or non-editable.

Included members must exist and have valid accounting information when the

member that references them is built. Build does not attempt to compile members

that have missing include dependencies.

Build rebuilds the primary input member if any of its recursive includes have

changed since it was last built.

Propagating Applications to Other Databases

You can use EXPORT or IMPORT to propagate systems by moving code from a

development group to a production group.

You can also use the EXPORT and IMPORT utilities to backup and restore data

from an SCLM hierarchy. The steps necessary to backup and restore the project

database are listed as follows:

1. Export the group to be backed up using the EXPORT service.

2. Save the member text in a PDS for later recovery if necessary.

3. To restore the data, create an alternate definition that specifies a new temporary

development group into which you will import the previously exported data.

4. Specify the export data sets to be restored on the FLMCNTRL macro.

5. Copy the saved member text for the backed up group to the new temporary

group.

6. Invoke the IMPORT service and specify the new temporary group. Note that

after the IMPORT service has completed, the new group contains the same data

that was originally exported.

288 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

7. If you use the new group, use the DELGROUP service to purge the data in the

original group, delete the original data sets, and rename the temporary group

to the original group name. Another way of accomplishing the same goal is to

delete the accounting data out of the original group and then import directly

into it.

Note: The IMPORT service erases the exported data after it successfully imports

members. Therefore, you may want to make a copy of the export data sets

before invoking the IMPORT service if you want to preserve the backup

version of the data sets.

Chapter 12. Managing Complex Projects 289

290 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 3. DB2 and Workstation Support

Chapter 13. SCLM Support for DB2, General

Information 293

Restrictions 293

Information For The Project Manager 294

Generating a Project Environment 294

Step 1: Determine the Project’s Hierarchy . . 294

Step 2: Identify the Types of Data to be

Supported 294

Step 3: Establish Authorization Codes . . . 294

Step 4: Allocate the PROJDEFS Data Sets . . 294

Step 5: Allocate the Project Partitioned Data

Sets 295

Step 6: Allocate and Create the Control Data

Sets 295

Step 7: Protect the Project Environment . . . 295

Step 8: Create the Project Definition 295

Step 9: Assemble and Link the Project

Definition 295

Information For The Developer 296

Developer Recommendations 296

Getting Started 296

Create DB2 CLIST 296

Chapter 14. SCLM Support for Workstation

Builds 299

Requirements 299

Overview of Workstation Build 299

Information For The Project Manager 301

Project Setup Considerations 301

Naming Conventions 301

Languages 302

What Workstation Tools Will You Use? . . . 302

Workstation Information 303

How to Find What You Need 303

Information For The Developer 304

Migrating Applications into SCLM 304

Architecture Definition Members for

Workstation Applications 305

Specifying Options 305

Including Outputs From Other Build Steps . . 306

Running Multiple Workstation Commands . . 306

Sample Language Definition 307

Workstation Setup 310

Directories and File Names 310

Multiple Builds on One Workstation 311

© Copyright IBM Corp. 1990, 2005 291

292 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 13. SCLM Support for DB2, General Information

In SCLM, you can have applications that support DATABASE 2 (DB2) processing.

Before you can use SCLM with DB2, the DB2 system must be installed and fully

operational; otherwise, SCLM cannot interact with it correctly.

In your SCLM project, you must create a DB2 CLIST for each DB2 application

plan. The DB2 CLIST must specify the Data Base Request Modules (DBRMs) to be

bound into the DB2 application plan. These DBRMs are created by the DB2

preprocessor defined in the appropriate language definitions. Because the DB2

CLIST is controlled by SCLM, it contains accounting information and can be built.

This produces build maps. The DB2 CLIST can be referenced from architecture

definitions.

The processing of a DB2 CLIST in SCLM has the following stages:

1. During the Editing stage, you must create a DB2 CLIST as described in “Create

DB2 CLIST” on page 296. When parsed, the DBRMs to be bound are identified

and an entry is placed in the accounting information for the DB2 CLIST.

2. During the Build stage, the DB2 CLIST member is executed to perform the

appropriate Bind or Free DB2 operation. An identical copy of the DB2 CLIST is

created and placed in the type that is used during the Promote stage. You can

browse this new DB2 CLIST but you cannot edit it. SCLM does not allow build

outputs to be edited. The new DB2 CLIST is an output of a build process, and

SCLM treats all outputs as noneditable.

The difference between the original DB2 CLIST and the new DB2 CLIST is the

language value. The language for the original DB2 CLIST is associated with a

language definition that contains the parsing and build translators; the

language for the new DB2 CLIST is associated with a language definition that

contains the copy and purge translators.

3. During the Promote stage, the DB2 CLIST that was created during the Build

process is executed to perform the Copy and the Purge phases of the Promote

stage.

In your architecture definitions, always refer to the DB2 CLIST used during the

Build stage; do not refer to the DB2 CLIST used during the Promote stage.

Note: When promoting a DB2 CLIST, the members that generated the DBRMs

referenced by the DB2 CLIST are also promoted.

Restrictions

The included members that are processed by the DB2 precompiler must reside in

the SCLM source library or its extended library for SCLM to track them as

included dependencies. Otherwise, the library should be added to the FLMSYSLB

macro in the language definitions to prevent SCLM from creating an Include

dependency. Additionally, ALCSYSLB=Y should be specified for the language

definition, or an FLMCPYLB with the appropriate library specified should be

added into the FLMALLOC that has DDNAME=SYSLIB in the COBOL compiler

step.

The parser determines the SQL include dependencies by parsing the EXEC SQL

INCLUDE statements. Some of the SCLM parsers check for SQL includes.

© Copyright IBM Corp. 1990, 2005 293

Refer to the SCLM Translators section of the z/OS ISPF Software Configuration and

Library Manager Reference for more information.

Information For The Project Manager

Generating a Project Environment

Chapter 1, “Defining the Project Environment” describes the steps to set up and

maintain an SCLM project database. For DB2 support, additional considerations

within these steps must be performed. This section describes these considerations

step-by-step.

Step 1: Determine the Project’s Hierarchy

There are no additional considerations.

Step 2: Identify the Types of Data to be Supported

If you are already running an existing SCLM project that has all the data types

described in Chapter 1, “Defining the Project Environment,” additional types must

be created. The following types of data must be maintained and are the

recommended naming conventions:

v DBRM

Contains the source member input to a DB2 BIND. It is generated by the DB2

preprocessing step.

v DB2CLIST

A DB2 CLIST that contains editable source members. These source members are

used during SCLM Build to control Bind/Free functions for DB2.

To have DB2 CLIST members and DBRM members with the same name, an

FLMINCLS macro needs to be specified in the language definition for the DB2

CLIST members. The FLMINCLS macro must list the DBRM type first on the

TYPES parameter. An example of an FLMINCLS macro to do this follows:

*

* SPECIFY TYPES TO SEARCH FOR DBRMS THAT ARE TRACKED AS

* INCLUDES TO THE DB2 CLIST MEMBERS

*

 FLMINCLS TYPES=(DBRM)

v DB2OUT

This type contains non-editable build output used during SCLM Promote to

control Bind and Free functions for DB2. During a build of a DB2 CLIST (of type

DB2CLIST), a copy of the DB2 CLIST is copied in the type DB2OUT into the

group that is being built. During a promote, this member is called to bind the

plan in the TO group and free the plan in the FROM group.

Step 3: Establish Authorization Codes

There are no additional considerations.

Step 4: Allocate the PROJDEFS Data Sets

The data set characteristics for the new types are described in Table 20.

 Table 20. SCLM Data Set Attributes for DB2 Types

Type PS or PO RECFM LRECL BLKSIZE

DBRM PO FB 80 3120

DB2CLIST PO FB 80 3120

DB2OUT PO FB 80 3120

294 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

You can browse the example project definition, FLM@EXM2, which provides an

example of the macros used to support DB2.

Step 5: Allocate the Project Partitioned Data Sets

There are no additional considerations.

Step 6: Allocate and Create the Control Data Sets

There are no additional considerations.

Step 7: Protect the Project Environment

There are no additional considerations.

Step 8: Create the Project Definition

Specify additional types to be supported with the FLMTYPE macro.

SCLM provides many language definitions as examples. The examples serve as a

guide in the construction of language definitions for specific applications and

environments. Use the COPY macro to include any of the following sample

definitions that apply to your DB2 environment:

 Table 21. Language Definitions for DB2

Member Language Description

FLM@BD2 DB2CLIST DB2 BIND/FREE

FLM@BDO DB2OUT DB2 BIND/FREE output

FLM@2ASM DB2 preprocessing + Assembler

FLM@2CO2 DB2 preprocessing + COBOL II

FLM@2C DB2 preprocessing + C/370

FLM@2FRT DB2 preprocessing + FORTRAN

FLM@2COB OS COBOL with DB2

FLM@2PLO PL/I OPTIMIZER with DB2

FLM@EASM ASSEMBLER F with CICS V3R2M1 and DB2

FLM@ECOB OS COBOL with DB2 and CICS

FLM@ECO2 COBOL II with DB2 and CICS

FLM@EC C/370 with DB2 and CICS

FLM@EPLO PL/I OPTIMIZER with DB2 and CICS

Define the Language Definitions: If you have a different naming convention for

the types or languages, you need to do the following steps:

v Modify the DFLTTYP and LANG values on the FLMALLOC macros to reflect

your naming conventions.

v Modify the DBRMTYPE values in the OPTIONS parameter on the FLMTRNSL

macros in the language definitions to reflect your naming conventions.

Step 9: Assemble and Link the Project Definition

There are no additional considerations.

Chapter 13. SCLM Support for DB2, General Information 295

Information For The Developer

Developer Recommendations

v To use multiple environments with DB2, use the naming conventions so that you

can distinguish between the DBRMs for different environments. For example,

use a type named MTDBRM to denote MVS/TSO and a type MCDBRM for

MVS/CICS.

v You can look at the names of included DBRMs for a DB2 CLIST by browsing its

accounting information:

1. Select the Utilities option from the SCLM Main Menu.

2. Select the Library option from the SCLM Utilities Menu.

3. From the SCLM Library Utility - Entry Panel, enter the DB2 type to be used

during Build.

4. From the list of members, select the DB2 CLIST that you want to examine

and browse its accounting information.

5. From the Accounting Record for the DB2 CLIST, select the Number of

Includes.

6. Finally, you see the list of included DBRMs in the DB2 CLIST.

Getting Started

Create DB2 CLIST

You must create a DB2 CLIST member for each DB2 application plan. The DB2

CLIST is a TSO CLIST that allows you to BIND or FREE the DB2 application. This

CLIST should contain code to perform the following functions:

v Allow different DB2 Subsystem names to be assigned to each group

v BIND the application plan

v FREE the application plan.

You can see the parameters and logic required in Figure 118 on page 297.

The DB2 CLIST member allows you to specify which DBRMs are bound into the

application plan. The DB2 CLIST member is editable.

The DB2 CLIST member must have an include statement for each DBRM to be

bound in the application plan. The include statement consists of an included

directive and the name of the included DBRM. SCLM parses the member and

keeps a list of included DBRM names, as well as other accounting information. The

include directive and include DBRM name must be on the same line. The include

statement format is:

 /* %INCLUDE dbrm-name */

The DB2 CLIST is usually built and promoted by using an architecture definition.

Use the SINC or INCLD keyword to reference the member from an architecture

definition. The member can also be submitted directly to build or promote. When

the member is submitted directly or is submitted through an INCLD architecture

definition keyword, SCLM uses the defaults defined in the member language

definition.

296 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

PROC 0 OPTION() GROUP()

 CONTROL MSG FLUSH

 /*---*/

 /* DBRM PROXY DSN CLIST for a DB2 Application Plan */

 /* */

 /* INPUT PARAMETERS: */

 /* OPTION() BIND OR FREE */

 /* GROUP() GROUP NAME FOR BIND OR FREE */

 /* */

 /* RETURN CODES: */

 /* 0 : SUCCESS */

 /* 4 : WARNING */

 /* 8 : ERROR */

 /* 16 : FATAL ERROR */

 /* 312 : INVALID GROUP */

 /* 316 : INVALID OPTION */

 /* */

 /*---*/

 /* INSTRUCTIONS FOR CUSTOMIZATION: */

 /* */

 /* 1) CHANGE THE ------- NAMES FOR YOUR DBRM MODULES. */

 /* 2) SPECIFY VARIABLES: */

 /* PLAN NAME (&PLAN -CHANGE PLANDEV, ETC...) FOR EACH GROUP */

 /* SUBSYSTEM (&SYS -CHANGE DB2C) FOR EACH GROUP */

 /* 3) USE THE SCLM GROUPS (DEV1, DEV2, ETC...) ACCORDING TO */

 /* YOUR PROJECT. */

 /* */

 /*---*/

 /* SPECIFY AN INCLUDE FOR EACH DBRM TO BE INCLUDED IN THE */

 /* DB2 APPLICATION PLAN */

 /* */

 /* %INCLUDE dbrm-name */

 /*---*/

 SET &RCODE = 0

 /*---*/

 /* SPECIFY THE BIND MEMBER LIST IN &DBRMS */

 /*---*/

 SET &DBRMS = &STR(dbrm-name)

 /*---*/

 /* SPECIFY PLAN NAME, BIND PARMS, AND SYSTEM FOR EACH GROUP */

 /* */

 /* Note that the different bind parameters could be used at */

 /* different groups. */

 /* */

 /*---*/

 SELECT (&GROUP)

 WHEN (group-name) DO

 SET &PLAN = plan-name

 SET &SYS = system-name

 SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +

 VALIDATE(BIND) ISOLATION(CS))

 END

 OTHERWISE DO

 SET &RCODE = 312

 END

 END

Figure 118. DB2 CLIST Generic Example (Part 1 of 2)

Chapter 13. SCLM Support for DB2, General Information 297

/*---*/

 /* INVOKE DSN COMMAND PROCESSOR TO BIND OR FREE */

 /*---*/

 SET &ENDDSN = END

 IF &RCODE = 0 THEN +

 DO

 SELECT (&OPTION)

 WHEN (BIND) DO

 DSN SYSTEM(&SYS)

 BIND PLAN(&PLAN) MEMBER(&DBRMS) &BPARM;

 &ENDDSN;

 SET &RCODE = &MAXCC;

 END

 WHEN (FREE) DO

 DSN SYSTEM(&SYS)

 FREE PLAN(&PLAN)

 &ENDDSN;

 SET &RCODE = &MAXCC;

 END

 OTHERWISE DO

 SET &RCODE = 316

 END

 END

 END

 EXIT CODE(&RCODE)

Figure 118. DB2 CLIST Generic Example (Part 2 of 2)

298 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 14. SCLM Support for Workstation Builds

You can store the source for workstation applications in SCLM. You can then use

the configuration functions to build and promote the application. The build

function transfers the source to an ISPF connected workstation, runs the compiler

or other workstation tool, and then stores the results back into SCLM.

Storing workstation applications in SCLM provides several benefits:

v You can use SCLM as a single point of access for the workstation code.

v You can protect and back up the application source, executables, and outputs

using the host.

v Host applications and workstation applications can share source.

v You can use SCLM’s configuration management to ensure that the application is

current.

v You can use the library management and versioning capabilities to track the

application parts through the hierarchy and to retain backup versions.

Requirements

Because of the differences in MVS and the workstation operating system, you must

meet the following requirements for SCLM to store the application source:

v The file names must follow ISPF member naming conventions and cannot be

more than 8 characters. Workstation file names can be in uppercase, lowercase,

or have initial capital followed by lowercase letters. This mapping is specified

using the WSCASE keyword in the ACTINFO file.

v Use consistent naming conventions for the extension names and subdirectory

layout. The workstation build translator provided with SCLM (FLMLTWST)

maps type names to extensions and subdirectories. Consistent use of the

extension and subdirectory names across the workstations that you use will

make sure that the mapping will work properly.

v Use consistent command names. The commands are defined by input data to the

FLMLTWST translator.

Overview of Workstation Build

The only distinction that SCLM makes between a workstation application and a

host application is where the compiler and other tools reside. The application

source and the outputs from builds are stored in PDS data sets on the host. The

result is that all of the SCLM functions work the same for a workstation

application as they do for a host MVS application except for build.

The difference between building a workstation application and a host application is

that special build translators are used for the workstation application. The user

doing the workstation build must use a workstation.

SCLM provides three build translators to build workstation applications. One

translator, FLMLTWST, is the driver and calls the other translators to perform

various tasks. To allow customization of the events that take place during a

workstation build, the FLMLTWST translator is written in REXX. This allows the

translator to be customized to meet the project’s needs. The FLMLTWST translator

performs the following tasks:

© Copyright IBM Corp. 1990, 2005 299

v Initialization and set up

SCLM checks the parameters, retrieves and checks the workstation information,

sets up file name mapping information, and sets up command information.

v Build map parsing

FLMLTWST calls the FLMTBMAP translator to get the contents of the build map

for the member being built. FLMLTWST parses the information in the build map

to get the list of inputs that must be transferred to the workstation and any

additional parameters that have been specified for the workstation command,

such as a compiler or other tool. FLMLTWST also gets the list of outputs after

the command is complete.

At the same time, the SCLM member names are mapped to workstation file

names based on the file name mapping information.

v Construct command parameters

FLMLTWST supports running multiple workstation commands during each

invocation. The parameters for each of the commands are put together based on

the parameters passed to FLMLTWST, the contents of the build map (input and

output file names can be included in the parameters), and on the workstation

command information.

v Response file construction

Some workstation commands support passing parameters using a file called a

response file. If the workstation command information specifies a response file,

one is created in a temporary data set and will be sent to the workstation with

the other workstation command inputs.

If multiple workstation commands will be issued, the response file for the first

workstation command is sent with the input files. Response files for later

commands are sent just before each command is run.

Response files are only generated and sent to the workstation if the workstation

command information indicates that one is to be used. If no response file is

used, the command parameters are specified with the workstation command.

v Transfer inputs to the workstation

FLMLTWST constructs a list of the input files (includes, source members, and

response file) to be sent to the workstation. The FLMTXFER translator is then

called to send the files to the workstation. FLMTXFER uses the FILEXFER

service to transfer files to the workstation.

The FLMTXFER translator keeps track of the SCLM members that have been

sent to the workstation. This record is used to ensure that include members and

source members are only transferred to the workstation once to reduce the time

required to build a workstation application. The record of what has been

transferred to the workstation is preserved in memory allocated by SCLM build.

The result is that, within a single SCLM build, FLMTXFER only downloads a

member once no matter how many source members that include it are built.

If the date and time of the host member’s statistics are the same as the date and

time of its workstation counterpart, SCLM assumes that they are the same, and

does not download the member a second time.

v Perform the workstation command

FLMLTWST constructs the workstation command based on the information

obtained in the set-up step. The command is issued on the workstation and

SCLM waits for the result.

Repeat this step for each workstation command that will run for the member

being built. Before each command is issued, a response file is constructed and

transferred to the workstation if needed.

300 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

v Transfer the outputs to the host system

FLMLTWST uses a list of outputs obtained from the build map to construct a list

of files to transfer from the workstation to the host system. The FLMTXFER

translator performs the transfer from the workstation to the host. The data sets

where the files are transferred are the data sets allocated to the ddname

specified in the translator definition for FLMLTWST. If FLMLTWST ends

successfully, build transfers the members into the SCLM hierarchy.

If you have set the FLMALLOC macro IOTYPE=P, the date and time on the host

member statistics are synchronized with the date and time of the corresponding

workstation file, so that if the member is used for another build step, it will not

be downloaded again.

Information For The Project Manager

Project Setup Considerations

You must consider several things when setting up a project to support workstation

applications. This section covers items that are specific to workstation applications.

Refer to Chapter 1, “Defining the Project Environment,” on page 3 for information

about general project setup.

Naming Conventions

Determine what SCLM type names to use and the mapping between SCLM type

names and workstation file extensions.

The recommended approach is to have a one-to-one mapping between the SCLM

type and the workstation extension. In addition to the type-to-extension mapping,

SCLM needs to know the format of the data within each type (ASCII text or

binary). To avoid having to define a mapping for each type, use something in the

type name that indicates the format of the data. For example, add BIN to the

workstation extension to create the SCLM type names for types that will contain

binary data. This will minimize the number of mapping definitions for the

ACTINFO file, because the wildcard character can be used to define a pattern in

the type and extension names.

Another approach is to merge several workstation extensions into the same SCLM

type. In this case, the workstation file names without the extension must be

unique. The drawback of this approach is that after the files are combined into one

SCLM type, they lose their individual extensions. The mapping is from the type to

the workstation. SCLM does not know what a file was once called on the

workstation. Only one extension can be defined for each type. This means that

when the files are combined, SCLM will use the same extension for all of them

when transferring them from or to the workstation. This may or may not be a

problem, depending on the type of data combined. It would not be a good idea,

for example, to combine C++ header files with H and HPP extensions into the

same SCLM type, because the C++ source members might include header files

with one or both of those extensions and would not find them if the extensions

were changed. There might be other situations where the loss of the extension

identity wouldn’t matter.

Workstation file names, excluding the paths and extensions, must be valid ISPF

PDS member names. Workstation file names can be in uppercase, lowercase, or

have initial capital followed by lowercase letters. This mapping is specified using

the WSCASE keyword in the ACTINFO file.

Chapter 14. SCLM Support for Workstation Builds 301

Languages

Next, you need to know which languages you will need.

One way to do this is to create a complex language definition that performs all of

the steps required to go from source to executable code or to whatever you want

the final result to be. The drawback to this approach is that when anything

changes all of the steps are performed rather than the minimal set. For example,

suppose there was a language that:

1. Compiled C source to an .obj

2. Compiled the resource source to an .res

3. Linked the .obj files into an .exe

4. Ran the resource compiler to add the resources from the .res to the .exe file

If the resource source changes, all of those steps are performed when some of them

could be avoided.

Another approach is to create a language for each step. However, some tools

produce outputs that are only needed until the next command is run. For example,

the output from step 3 should not be saved into the hierarchy until after the

resource compiler has been run. Saving one .exe into the SCLM hierarchy from the

compiler and another copy from the resource compiler increases the project data

set size and the time required to build.

A better approach is to create languages for each step that produces outputs that

are kept permanently in the hierarchy. So, for the previous example, you would

need three languages:

1. One language to compile C source and store the .obj files

2. One language to compile the resource source and store the .res files

3. One language to link the .obj files and add the resources from the .res files.

What Workstation Tools Will You Use?

The ACTION parameter on the FLMLTWST translator determines the workstation

command that is run. The FLMLTWST translator maps the actions to a workstation

command, determines the basic parameters to pass to that command, maps the

workstation extensions to input and output parameters, and then orders the

parameters.

In addition to the ACTION specified by the language definition, you can perform

other actions in a build step by use of the CMD ACTION statement. For more

information, refer to the FLMLTWST section of the z/OS ISPF Software Configuration

and Library Manager Reference.

What Parameters Do You Need For the Workstation Tools?: Specify parameters

in three places:

v In the translator (FLMLTWST). The parameters specified in FLMLTWST are used

for every member of every language that calls it. They should be only the

parameters that FLMLTWST requires, such as the parameters that specify the

input and output file names.

You can specify parameters to FLMLTWST for the workstation command in

three ways:

– In the language definition and on architecture PARM statements

– On the architecture CMD statement (Refer to the FLMLTWST section of the

z/OS ISPF Software Configuration and Library Manager Reference for more

information about the CMD statement and its use with workstation

applications).

– Using parameters that are associated with inputs and outputs.

302 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The order of the parameters is specified in the input data to the FLMLTWST

translator and is the order required by the workstation command.

v On the FLMTRNSL macro in the language definition. These parameters are used

for every member of the language. These should be parameters that the project

requires. For example, the /Kg+ parameter can be specified to ensure that

messages are produced for all GOTO statements.

v In an architecture member. These parameters are specific to a member. For

example, the /DAPPL=A parameter can be used to define a preprocessor macro.

Workstation Information

The FLMLTWST translator needs information about the workstation such as the

response file name and the directory name to prefix all files transferred to or from

the workstation. It gets this information by reading from a data set.

The naming convention for the data set must be identified so that you can specify

it in all the language definitions. Typically, the same information is used for all

languages, although it is not required. The naming convention can include the

variables to substitute the userid, project, group or other information into the data

set name pattern. The variables used depend on where builds take place and on

local data set naming standards. If the user determines the workstation, the userid

should be part of the data set name. If the group determines the workstation, the

group variable should be used without the userid variable. For more information

about the USERINFODD parameter and the FLMCPYLB macro, refer to the z/OS

ISPF Software Configuration and Library Manager Reference.

How to Find What You Need

The International Technical Support Centers (ITSC) Version 4 of ISPF and SCLM

Implementation Guide, GG24-4407, provides a good overview of SCLM and the ISPF

Client/Server.

For information on setting up SCLM or PDF to view and edit on the workstation,

see Appendix A: Installing the Client/Server Component in the z/OS ISPF User’s

Guide Vol I.

Information on SCLM Workstation Build is available in both SCLM manuals. This

chapter contains information on SCLM support for workstation builds on OS/2

and Windows. The z/OS ISPF Software Configuration and Library Manager Reference,

under “SCLM Translators”, contains information on the FLMLRC2 and FLMLRIPF

sample parsers, as well as the FLMLTWST translator. For information about the

ACTINFO files, USERINFO files, and workstation language definitions, see the

section on the FLMLTWST translator in the z/OS ISPF Software Configuration and

Library Manager Reference.

The ISPF Sample and Macro libraries contain a number of files to support SCLM

workstation builds. The ISPF Sample Library contains the following members:

FLMWBMIG Sample migration EXEC for IBM CSET++ for OS/2 “Hello World

6” sample.

FLMWBUSR Sample USERINFO file.

FLMWBAIO Sample ACTINFO file for IBM CSET++ for OS/2 “Hello World 6”

sample.

FLMWBAIW Sample ACTINFO file for Borland (TM) C++ “Hello World”

sample.

FLMWBPRJ Sample workstation project definition.

Chapter 14. SCLM Support for Workstation Builds 303

FLMWBJCL Sample JCL to allocate the data sets for the FLMWBPRJ sample

project.

FLMWBTMP Sample workstation language definition template.

FLMWBOS2 High-level architecture definition to build IBM CSET++ for OS/2

“Hello World 6” sample.

FLMWBIPF Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” help file.

FLMWBDLL Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” DLL file.

FLMWBEXE Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” EXE file.

FLMWBWIN High-level architecture definition to build Borland C++ “Hello

World” sample.

 The Macro Library contains sample language definitions for OS/2 and Windows.

The IBM CSET++ for OS/2 language definitions are:

FLM@WICC Compile

FLM@WDUM Compile dummy object to hold DLLs

FLM@WEXE Link EXE

FLM@WIPF Build Help

FLM@WLNK Link386 to Link the DLL

FLM@WRC Resource compile

 The Borland (TM) C++ for Windows language definitions are:

FLM@WBCC Compile

FLM@WBRC Resource Compile

FLM@WTLK TLINK OBJ to EXE

Information For The Developer

Migrating Applications into SCLM

To migrate a workstation application into SCLM:

1. Get the following project information from the project manager:

v The name of the development group where the members will be stored

v The type names and their mapping to workstation file extensions

v The languages to use for source members

v The default parameters specified in the language definition for each language

v The actions and defaults specified in the ACTINFO file for workstation build
2. Transfer the application source to the MVS system into the data sets for the

development group based on the workstation file to SCLM type name mapping

established for the project.

Files containing data that can be edited on MVS must be transferred with

ASCII-to-EBCDIC translation. Other files can be transferred in binary format

(no translation). The FILEXFER service is recommended to avoid possible

translation problems.

304 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

3. Migrate the members into SCLM using the languages supplied by the project

manager.

4. Create architecture definition members as needed.

Architecture Definition Members for Workstation Applications

Architecture definition members must be created in any of the following cases:

v The source member requires options that were not specified in the language

definition or action information data set.

v You need to override the inputs or outputs used in the language definition.

v The output member names are not the same as the source member name. See

“Statement Uses” on page 273 for a description of the output keywords for

architecture members.

Some things can be done in the language definition to support adding a prefix

or suffix to the output member name, but these capabilities do not support all

possibilities. For more information, refer to the DFLTMEM parameter on the

FLMALLOC macro in the z/OS ISPF Software Configuration and Library Manager

Reference.

v Outputs from the builds of other members are inputs to this build, for example,

linking object modules together.

v Multiple workstation commands must be issued to complete the build step.

v To specify a relationship between components other than the source-to-include

and input-to-output relationships generated by SCLM. An example would be to

specify a relationship between the executable, DLL, and help components of a

workstation application.

Specifying Options

Options can be specified to the workstation compiler, linker, or other tool by using

the architecture definition CMD statement. This statement must be followed by the

keyword PARMS and the parameters that are passed to the workstation tool. In the

following example, the option ‘/Ss’ is added to the options passed to the

workstation tool.

 If multiple CMD PARMS statements appear in the architecture member, the

options are passed to the workstation tool in the order they appear in the

architecture member. They are added to the workstation command as specified in

the ACTINFO input to the FLMLTWST translator.

If you want to add options to be passed to the FLMLTWST translator, you can use

the PARM and PARMx architecture statements. However, these options are

considered FLMLTWST options rather than options for the workstation command.

SINC SAMPLE C * source member

OBJ SAMPLE OBJBIN * generated object member

LIST SAMPLE LISTING * listing file

*

* The following CMD statement has compile options for this member

*

CMD PARMS /Ss

Figure 119. Specifying Options in a Workstation Architecture Definition

Chapter 14. SCLM Support for Workstation Builds 305

Including Outputs From Other Build Steps

Use the architecture definition statements INCLD, INCL, and SINC to include

members that are outputs from building other members. Using the INCLD and

INCL statements ensures that SCLM builds the correct member to generate the

output.

When a CC or generic architecture definition is built, SCLM uses the language

definition of the member on the first SINC statement. For LEC architecture

definitions, the LE370 language is used. To override the language, specify the

LKED architecture statement with the name of the language definition to use.

The following example shows an architecture member that can link several object

members together to produce an .exe file. The language of EXE is used.

Running Multiple Workstation Commands

Building some members requires that multiple workstation commands be issued.

The FLMLTWST translator issues a workstation command for each action it finds.

The first action is the one specified by the ACTION parameter to FLMLTWST in

the language definition, or the default action if none is specified. Additional

actions can be performed by using the architecture CMD statement with the

ACTION keyword. The ACTION keyword must be followed by an action defined

in the FLMLTWST translator.

Figure 121 on page 307 shows an architecture member that links two object

modules together and then runs another workstation command before transferring

the outputs to the MVS system. In this example, the second command runs the

OS/2 resource compiler to add the information from a binary resource file to the

.exe generated by the link.

INCL SAMPLE ARCHDEF * archdef which produced sample object

INCLD COMMON C * source member which produced common object

*

LKED EXE

*

LOAD PROG1 EXEBIN * .exe file

LMAP PROG1 MAP * listing file

Figure 120. Including Outputs as Inputs

306 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The order of the INCL and INCLD statements in the previous example is not

important. The FLMLTWST translator determines which files are inputs to each

step based on information defined in the translator. The appropriate options are

also added for each of the inputs and outputs by the FLMLTWST translator.

Sample Language Definition

Figure 122 shows a language definition for compiling C source members on the

workstation. A description of the items in the language definition follows.

*

LKED EXE * link language

*

KREF OBJ * include generated object modules

*

INCL MAHJONGC ARCHDEF * archdef that produces MAHJONGG OBJBIN

INCL TILE ARCHDEF * archdef that produces TILE OBJBIN

SINC MAHJONGG DEF * DEF source

*

LOAD MAHJONGG EXEBIN * Generated .exe file

LMAP MAHJONGG MAP * Generated .map file

*

* Run resource compiler after the link completes

*

CMD ACTION RCEXE

*

KREF OUT1 * include generated .res file

*

INCLD MAHJONGG RC * Source that produces MAHJONGG RESBIN

*

Figure 121. Multiple Workstation Commands

* *

* SCLM LANGUAGE DEFINITION FOR IBM CSET/2 OR CSET++ FOR OS/2 *

* COMPILE SOURCE TO OBJECT *

* *

*

*

CPPOS2 FLMLANGL LANG=CPPOS2, C

 VERSION=2, C

 CHKSYSLB=IGNORE

*

 FLMINCLS TYPES=(H,HPP,@@FLMTYP,@@FLMETP)

H FLMINCLS TYPES=(H)

HPP FLMINCLS TYPES=(HPP)

*

* PARSER

*

 FLMTRNSL CALLNAM=’C/C++ PARSE’, C

 FUNCTN=PARSE, C

 CALLMETH=TSOLNK, C

 COMPILE=FLMLRC2, C

 PORDER=1, C

 OPTIONS=(STATINFO=@@FLMSTP, C

 LISTINFO=@@FLMLIS, C

 LISTSIZE=@@FLMSIZ)

*

Figure 122. Workstation C Language Definition (Part 1 of 2)

Chapter 14. SCLM Support for Workstation Builds 307

FLMLANGL macro

This macro specifies the language name, CPPOS2, the language version, ″1″,

and that SCLM is to ignore any includes that are not in the project hierarchy.

FLMINCLS macro

This macro indicates the types searched when looking for includes. Includes

with the workstation file extension ’h’ are found in the H type. Other includes

are found in the type of the source member or its extended type.

FLMTRNSL macro (functn=parse)

This macro identifies the parser to use when the members of this language are

updated. The parser scans the member for include dependencies and counts

statistics. See the z/OS ISPF Software Configuration and Library Manager Reference

for a description of the FLMLRC2 parser.

* (* SOURCE *)

 FLMALLOC IOTYPE=A,DDNAME=SOURCE

 FLMCPYLB @@FLMDSN(@@FLMMBR)

*

* BUILD

*

 FLMTRNSL CALLNAM=’C/C++’, C

 FUNCTN=BUILD, C

 CALLMETH=ISPLNK, C

 COMPILE=SELECT, C

 VERSION=1, C

 GOODRC=0, C

 PORDER=1, C

 OPTIONS=’CMD(FLMLTWST ACTION=COMPILE,BMAPINFO=@@FLM$MP,SC

 CLMINFO=@@FLMINF,BLDINFO=@@FLMBIO,PARMS=’

*

* (* OBJ *)

 FLMALLOC IOTYPE=P,RECFM=VB,LRECL=1024, C

 RECNUM=4000,DDNAME=OBJ,CATLG=Y,KEYREF=OBJ, C

 DFLTTYP=OBJBIN,DFLTMEM=*,LANG=EXE

* (* LIST *)

 FLMALLOC IOTYPE=O,RECFM=VB,LRECL=256, C

 RECNUM=4000,DDNAME=LIST,CATLG=Y,PRINT=I, C

 KEYREF=LIST,DFLTTYP=LST

* (* USERINFO *)

 FLMALLOC IOTYPE=A,DDNAME=USERINFO

 FLMCPYLB @@FLMUID.SCLM.USERINFO

* (* ACTINFO *)

 FLMALLOC IOTYPE=A,DDNAME=ACTINFO

 FLMCPYLB @@FLMPRJ.PROJDEFS.ACTINFO

* (* MESSAGE *)

 FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,DISP=MOD, C

 RECNUM=4000,DDNAME=MESSAGE,PRINT=I

* (* MSGXFER *)

 FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C

 RECNUM=4000,DDNAME=MSGXFER

* (* BMAP *)

 FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

 RECNUM=4000,DDNAME=BMAP,PRINT=I

* (* FILES *)

 FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C

 RECNUM=4000,DDNAME=FILES,PRINT=I

* (* RESPONSE *)

 FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

 RECNUM=4000,DDNAME=RESPONSE,PRINT=I,CATLG=Y

*

Figure 122. Workstation C Language Definition (Part 2 of 2)

308 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

FLMTRNSL macro (functn=build)

This is the definition of the build translator. It calls FLMLTWST to perform the

compile on the workstation. The ACTION parameter is set to compile to

indicate that the compiler is to be called. The PARMS parameter at the end of

the parameter string allows for PARM keywords in the language definition to

specify additional parameters. The other parameters are used to pass

information between SCLM build and the translators that FLMLTWST calls.

FLMALLOC macro (ddname=obj)

This macro allocates the ddname that will hold the .obj file generated on the

workstation. The RECFM and LRECL values must match the allocation of the

data set in the hierarchy where the .obj file will be stored.

IOTYPE=O Indicates that a sequential data set will be allocated to hold the

output.

IOTYPE=P Indicates that a partitioned data set will be allocated to hold

the output. Using IOTYPE=P can improve build performance

for builds with more than one step by copying the date and

time of the workstation file to the host member. If the file is

needed for subsequent build steps, the copy on the workstation

will be used rather than downloading the file that was just

uploaded.

DFLTMEM=* Indicates that the output member in the PDS will have the

same name as the member being built.

RECNUM Indicates the maximum number of records that can be stored

in the data set

CATLG=Y Allows the file to be transferred from the workstation to the

data set allocated to this ddname.

KEYREF=OBJ Indicates that this is an object module. This references the

architecture OBJ statement. See “Architecture Statements” on

page 272 for more information on architecture statements.

DFLTTYP Indicates the type in the hierarchy where the member is stored.

LANG Gives the language to associate with the output member. This

can be used later if the member is the input to another

translator.

Because the KEYREF parameter is OBJ, the FLMLTWST translator requires the

ddname to be OBJ also or the OBJ parameter must be specified giving the

ddname. For example, to use the ddname OBJBIN for outputs with a KEYREF

of OBJ, you must specify ″OBJ=OBJBIN″ in the options string of the

FLMLTWST translator.

FLMALLOC macro (ddname=list)

This is the allocation for the ddname to hold the .lst (listing) file that was

generated on the workstation. This FLMALLOC has IOTYPE=O to allocate a

sequential data set to hold the listing that will be stored back in the hierarchy.

The PRINT parameter is also specified to initialize the data set and then copy

it to the user’s BUILD.LISTnn data set if needed. The IOTYPE=O or IOTYPE=P

is needed because of the PRINT parameter.

FLMALLOC macro (ddname=userinfo)

This macro allocates the USERINFO data set. The FLMCPYLB macro that

follows it allocates an existing data set to the ddname. The data set has the

userid as the high-level qualifier, followed by SCLM.USERINFO. See the

description of the FLMLTWST translator for the contents of this data set.

Chapter 14. SCLM Support for Workstation Builds 309

FLMALLOC macro (ddname=actinfo)

This is the allocation for the ACTINFO data set. The FLMCPYLB macro that

follows it allocates an existing data set to the ddname. The data set has the

project as the high-level qualifier, followed by ″PROJDEFS.ACTINFO″.

FLMALLOC macro (ddname=message)

This ddname stores messages from the translators that FLMLTWST calls. If the

FLMTXFER translator fails, this is the first place to look.

FLMALLOC macro (ddname=msgxfer)

This ddname is used to transfer message files from the workstation to the host.

After the messages are transferred to the host, they are appended to the

messages ddname.

FLMALLOC macro (ddname=bmap)

This is the ddname where the FLMTBMAP translator writes the build

information.

FLMALLOC macro (ddname=files)

This is the ddname to which FLMLTWST writes the list of files for FLMTXFER

to transfer.

FLMALLOC macro (ddname=response)

This is the ddname where FLMLTWST generates the response file that is sent

to the workstation. ACTION=COMPILE uses a response file; but if no response

file is needed for the action, this ddname can be omitted.

Workstation Setup

Workstation build expects the workstations to transfer files and issue commands in

a consistent way. However, some information can vary from workstation to

workstation. This information is contained in the user info data set allocated to the

ddname that is specified by the USERINFO parameter when calling the

FLMLTWST translator. Refer to the description of the FLMLTWST translator in the

z/OS ISPF Software Configuration and Library Manager Reference for information

about the contents of this data set.

Directories and File Names

FLMLTWST constructs workstation file names from four components:

v The data directory is obtained from the userinfo data set (as specified by the

DATA_DIR keyword). It can contain drive letters and whatever is necessary to

establish the base path for the files and subdirectories.

v The subdirectory is obtained from the ACTINFO data set. The subdirectory is

based on the type of the member. Subdirectories can be used to place different

types of members in different directories for the workstation command or tool.

v The file name is the SCLM member name.

v The extension is obtained from the ACTINFO data set that maps SCLM types to

extensions.

v The case (upper or lower) of the workstation file name is set based on the

WSCASE value specified in the ACTINFO data set.

When SCLM constructs the full file name from the above components, it does not

add or remove any characters from each of the components. Each component must

be set up so that when it is combined with the others it will make a valid file

name.

310 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

The FLMLTWST translator as it is shipped expects the data directory name not to

end with a ’/’ or ’\’, but the subdirectory should start and end with these

characters. The extension contains the ’.’ character.

Following are some examples of how FLMLTWST would put these four

components together:

Data Directory Subdirectory

File Name

(Member) Extension Generated File Name

e:\temp \ example1 .c e:\temp\example1.c

e: \temp\ example2 .h e:\temp\example2.h

\temp \bin\ example3 .exe \temp\bin\example3.exe

The FLMLTWST translator does not clean out the directories after the workstation

command is complete and the outputs have been transferred to the MVS system.

The workstation owner must clean out the directories periodically to ensure that

the workstation disk(s) do not fill up.

Multiple Builds on One Workstation

SCLM supports using a single workstation for doing multiple builds either for a

single user or multiple users. However, if the builds are taking place at different

groups, either the base directory or the subdirectory must differ based on the

group. This will avoid the problem of different builds overlaying one another’s

files.

One setup would have all builds at a specific group in the SCLM hierarchy occur

on a specific workstation. In this case, the hierarchy view for all builds taking

place on the workstation will be consistent so a single set of directories can be

used or the directory names can vary based on the user performing the build.

Another setup would have a separate workstation for each user. In this case, either

each user would need to ensure that all builds running concurrently are for the

same group or the directory names would need to vary based on the group where

the build is taking place.

Two methods to vary the directory name by the build group are:

v Include the @@FLMGRP variable in the FLMCPYLB allocation of the USERINFO

data set. Then ensure that the USERINFO data sets that now include the group

name in the data set name also vary the base directory based on the group

name.

v Update the logic of FLMLTWST to accept a parameter with the group name

where the build is taking place. Then generate the subdirectory based on the

group. The language definition must set the group parameter to @@FLMGRP to

pick up the build group.

Chapter 14. SCLM Support for Workstation Builds 311

312 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1990, 2005 313

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

314 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1990, 2005 315

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Programming Interface Information

This publication primarily documents information that is NOT intended to be used

as Programming Interfaces of ISPF.

This publication also documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of ISPF. This information is

identified where it occurs, either by an introductory statement to a chapter or

section or by the following marking:

+---------------------Programming Interface information----------------------+

+------------------End of Programming Interface information------------------+

316 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AD/Cycle

APL2

BookManager

BookMaster

C++/MVS

COBOL/370

Common User Access

CUA

DFSMSrmm

DFSMS/MVS

DFSORT

FFST

GDDM

IBM

Language Environment

MVS

MVS/XA

OS/390

RACF

SAA

Systems Application Architecture

Tivoli

VTAM

z/OS

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 317

318 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Glossary of SCLM Terms

A

access key. An identifier used to restrict access to a

member.

accounting information. Accounting information is

stored in the SCLM VSAM accounting data sets and

consists of accounting and build map records.

accounting record. An SCLM control data record

containing statistical, historical, and dependency

information for a member under SCLM control.

action bar. The area at the top of an ISPF panel that

contains choices that give you access to actions

available on that panel. When you select an action bar

choice, ISPF displays an action bar pull-down menu.

alternate project definition. A project definition that

provides a version of the project environment which

differs from the default project definition.

application. Software that performs a function for an

end user.

API. Application Programming Interface

APT. Application Programming and Test

architecture. The organization of software components

to form integrated applications.

architecture definition. A means of organizing

components of an application into conceptual units. It

is SCLM’s method of defining an application’s

configuration. It describes how the components of an

application fit together and is used to drive both the

build and promote functions. Architecture definitions

are used to group components into applications,

sub-applications, and load modules.

architecture member. Defines an individual software

component, which may be a collection of other

architecture members, by specifying its relationship to

other software components of an application.

audit information. Information associated with a

member which describes when a member was

modified, how it was modified, and who modified it.

This information is stored in the SCLM VSAM audit

data sets.

audit trail. See audit information.

authorization code. An identifier used by SCLM to

control authority to update and promote members

within a hierarchy. These codes can be used to allow

concurrent development without the risk of module

collisions (overlaid changes).

authorization group. An identifier associated with a

set of authorization codes.

B

build. The process of transforming inputs into outputs

through the invocation of translators specified in the

language definition. Compilers, preprocessors, and

linkage editors are examples of translators that might

be invoked at build time.

build map. Internal data record containing a complete

analysis of the database at the time of the build; it

includes the names of all referenced members and the

last change date and version number of each member.

C

change code. An 8-character identifier used to indicate

the reason for an update or modification to a member

controlled by SCLM.

code. Program(s) written in a language that is subject

to a given translation process.

compilable member. A member recognized by the

compiler or translator as an independent unit or a

controlling unit for the language.

component. See software component.

concurrent updates. Concurrent updates occur when

two programmers update the same member at the

same time. This is supported through the use of

authorization codes and the Edit Compare tool or

alternate project definitions.

configuration management. See software configuration

management.

configuration management plan. See software

configuration management plan

control data. Information that SCLM stores about each

member under its control. The control data is stored in

the accounting and audit VSAM data sets defined for a

project.

copylib. A library containing include referenced

source code.

cross-reference record. Internal data record containing

Ada compilation unit/member relationship

information.

© Copyright IBM Corp. 1990, 2005 319

D

data base. SCLM-controlled VSAM data sets for a

project.

database administrator. See project administrator.

ddname substitution list. A string of ddnames

allocated for the translator. The ddname substitution

list is usually documented in the Programmer’s Guide

for compilers and linkage editors.

default architecture definition. Architecture definition

that is generated by SCLM when one is not specified as

input to a build. This is done when a source member is

built directly.

default project definition. The main project definition

used by an SCLM project.

dependency. Dependency describes a relationship

between a source member and the members it includes.

A source member has a dependency on a member

which it includes.

dependency information. Information on

dependencies is stored in the SCLM accounting record.

development group. All groups in the lowest level of

the hierarchy are known as ″development groups″.

These groups represent end-nodes with no other lower

groups promoting into them.

development layer. Layer of an SCLM hierarchy

consisting of development groups.

development life cycle. The process followed to create

an application. The process starts at the program

requirements gathering phase, moves to the design

phase, the development phase, and continues to the

release of the final product.

downward dependency. A dependency indicating a

compilation unit which must be compiled after the

current compilation unit is compiled.

draw down. During edit, SCLM copies the member

from its first occurrence in a key group in the library

concatenation into a development group and locks it.

dynamic include. An include for a source member

that cannot be resolved until after the translator

invocation.

dynamic reference. A reference that involves a

variable.

E

editable/non-editable. Source members (created by an

edit session) are editable; members produced by a

processor during a build are non-editable.

ellipsis. Three dots that follow a pull-down choice.

When you select a choice that contains an ellipsis, ISPF

displays a pop-up window.

F

function key. In previous releases of ISPF, a

programmed function (PF) key. This is a change in

terminology only.

G

group. A set of project data sets with the same

middle-level qualifier in the SCLM logical naming

convention.

H

hierarchical view. A path of groups (concatenation)

through the hierarchy. The path may start at any group

in the hierarchy and follows the promote path to the

topmost group in the hierarchy.

hierarchy. The organization of groups in a ranked

order, where each group is subordinate to the one

above it.

I

include. A member that is required to complete a

compile of the member that references it.

include-set. An include-set is used to associate an

included member name with the type or types in the

project which are searched to find a member with that

name.

integrate. To merge two or more software components

of an application into a single software application.

K

key group. Data is copied into this group and then

purged from the previous group, effectively ″moving″

the data. Non-key groups are used when a simple copy

is desired.

L

language definition. Specifies the set of translators to

be executed for SCLM functions PARSE, VERIFY,

BUILD, COPY, and PURGE. A language definition is

composed of one FLMLANGL macro followed by an

FLMTRNSL macro for each translator to be executed

for members of SCLM libraries whose language

attribute matches the value of the LANG keyword in

the FLMLANGL macro.

320 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

layer. A given tier of the hierarchy, made up of groups

of equivalent rank.

level. See layer.

library (MVS). A partitioned data set.

lock. When a user locks a member, only that user can

change it. All other users are unable to change that

member until the member is promoted or unlocked.

When you lock a member, you specify an authorization

code. If two users need to change a part, they can use

different authorization codes.

lock service. Restricts (locks) a member to a

development group.

M

maximum promotable group. The topmost group to

which a member can be promoted.

member. The discrete element of an SCLM database,

representing a single data type of a software

component.

metavariable. A variable that includes many other

SCLM variables.

migrate. Registering software components in SCLM:

this includes identifying the component language, and

possibly the change code and authorization code.

migration. The process of introducing members into

SCLM control. Migration locks the member, parses it

according to the requested language, and stores the

information in the accounting data base. You can user

the migration utility to enter a large number of

members into a project’s data base, such as during

conversion to SCLM.

Modal pop-up window. A type of window that

requires you to interact with the panel in the pop-up

before continuing. This includes canceling the window

or supplying information requested.

Modeless pop-up window. A type of window that

allows you to interact with the dialog that produced

the pop-up before interacting with the pop-up itself.

N

nested dependencies. Nested dependencies occur

when a source member includes another member,

which in turn includes another member. SCLM tracks

nested dependencies, so that when a member changes,

any member that includes it is rebuilt, no matter how

many levels of nesting there are.

non-key group. A group that data is copied into (as

opposed to moved into) during promotion.

P

parser. A program that reads an editable member to

determine dependency and statistical information about

the member. This information is stored in the SCLM

accounting data base.

predecessor date/time. The last modified date/time

stamp taken from the previous version of the current

member.

point-and-shoot text. Text on a screen that is cursor

sensitive.

pop-up window. A bordered temporary window that

displays over another panel.

predecessor verification. The process of verifying that

the previous version of a member has not changed.

predecessors. Previous versions of a member existing

at a higher level within the same hierarchical view.

primary commands. Editing commands that are

entered on the Command line.

primary group. A key or non-key group with two or

more groups promoting into it that must be allocated

when a hierarchy is to be accessed.

private library. A partitioned data set or partitioned

data set extended belonging to a group in the

development layer of the hierarchy.

project. A collection of libraries representing an

integrated SCLM data base, under a single high-level

qualifier.

project administrator. The person who maintains an

SCLM project.

project definition. Defines the SCLM library structure,

project control information, and language definitions. A

project definition is a load module used by SCLM at

run time. The source code for a project definition is

composed of macros.

project definition data. Project definitions and

language definitions which are used to create and

control an SCLM project.

project environment. Information which makes up an

SCLM project. There are three types of information:

v Project Definition Data

v User Applications Data

v Control Data

project identifier. The name assigned to the project

definition.

Project Partitioned Data Sets. MVS Partitioned Data

Sets where user application data is stored.

Glossary of SCLM Terms 321

promote. The process of moving an application or its

components from one level in the project hierarchy to

the next. Promotion out of a development group

removes the lock on editable members that were

successfully promoted.

promote path. The link between two groups along

which data moves from one subordinate group to the

next group in the hierarchy.

pull-down menu. A list of numbered choices

extending from the selection you made on the action

bar. The action bar selection will be highlighted. You

can select an action either by typing in its number and

pressing Enter or by selecting the action with your

cursor. ISPF displays the requested panel. If your

choice contains an ellipsis (...), ISPF displays a pop-up

window. When you exit this panel or pop-up, ISPF

closes the pull-down and returns you to the panel from

which you made the initial action bar selection.

push button. A rectangle with text inside. Push

buttons are used in windows for actions that occur

immediately when the push button is selected

(available only when you are running in GUI mode).

S

SCLM_id. Identifier used to communicate information

between the SCLM services. There is a unique

SCLM_id generated for each invocation of the INIT

service.

scope. The set of members (including architecture

definitions) that will be processed (for example verified,

copied, compiled, or purged) by build or promote.

service. An SCLM function available via a command

or programming interface.

service parameter list. The options supplied when

invoking an SCLM service.

software component. Any input or output member

associated with an application, which together make up

all or a member of the application.

software configuration management. The method of

controlling and integrating software components to

produce high quality applications. Provides a common

point of integration for all planning and

implementation activities for a project.

software configuration management plan. A

formalized procedure for software configuration

management.

subapplications. Separate parts of an application

being developed within a project. Once the project is

completed, the parts are integrated to form the final

product.

syslib. A library containing source code not under

SCLM control. No dependency information is

maintained for members in a syslib.

T

text. Data present in its natural language form (not

translatable).

traceability. Capability to access and maintain records

of information about a software component, including

when the component was last changed and why.

translator. A load module, CLIST, or REXX program

that receives control from SCLM for execution. The

name of the translator is specified as the value of the

COMPILE keyword for the FLMTRNSL macro.

Examples of translators are compilers, assemblers,

linkage editors, text processors, DB2 preprocessors,

CICS preprocessors, utilities, and customer tools.

type. The third qualifier of the SCLM naming

convention for project partitioned data sets. Typically

identifies the kind of data maintained for a project

hierarchy. Examples of types are SOURCE, OBJECT and

LOAD.

U

unlock. To make a member (formerly locked out)

available for updating (usually associated with

promote).

unlock service. Removes the restriction (unlocks) on a

member to a development group.

upward dependency. A dependency indicating a

compilation unit that must be compiled before the

current compilation unit is compiled.

V

Version. A copy of a member as it existed at a

previous point in time.

Versioning. A function that enables you to retrieve a

version of a member. Useful for ″backing out″ changes.

322 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Index

Special characters
@@FLMGRP variable 29

@@FLMINC 99

A
access key

definition of 167

accessibility 313

accounting data set
creating 19

space computation 21

specifying 28

synchronizing 68

accounting information
change codes 169

field descriptions 166, 181

include reference 171

selection criteria 181

Accounting Record
Change Code List panel 170

Include List panel 171

panel 166

Statistics Panel 168

User Data Entries panel 172

accounting record type
definition of 182

accounting records
deleting 159

field descriptions 166

historical information 167

panel 166

statistical information 168

accounting statistics report 187

accounting status
definition of 167

ACCT control option 28

ACCT2 control option 28

action bar 148

Migration Utility - Entry panel

choices 177

View - Entry panel choices 150

action reason values 206

activities
nesting xvi

ALIAS keyword, format 273

allocating
number of data sets 14

project data sets 13

SCLM data sets 14, 18

allocating SCLM data sets, Output

Disposition 251

alternate project definition
creating 73

defining 25

alternate project definition, selecting 149

application
controlling 269

defining 269

sample 279

application components 269

architecture
scope 183

architecture definition
compilation control 266, 282

converting JCL decks 112

copy 282

creating 74, 272

fields 182

generic 269, 282

high-level 269

kinds of 265

language 272

link-edit control 267, 280

overview 265

sample 279

statement
format 272

optional LIST 267

optional LMAP 268

uses 273

synchronization with 282

understanding 254

use of 265, 266

valid keywords 273

architecture member 265

architecture report
architecture information 188

cross-reference information 188

panel 189

utility 188

architecture type 8

assemble project definition 40

assignment statement
in accounting records 169

audit and version selection 205

audit and version utility 203

hierarchy view 205

member record 209

audit control data sets
allocation of 21

protecting 24

specifying 29

audit control data sets, specifying 18

audit information, storing in a VSAM

data set 203

audit version delete notify

(ADVNTF) 59

audit version delete user exit routine
parameters 59

requirements 59

specification 59

audit version delete user exit routine,

specifying 59

audit version delete verify (AVDVFY) 59

Audit/Version Utility panel 204

authorization code
definition of 8

for concurrent development and

maintenance 11

authorization code (continued)
for controlling

member updates 9

SCLM promotions 9

test versions of members 9

update panel 175

authorization code change
definition of 167

authorization code usage 9

authorization group, defining 27

automatic ordering
compile 267

AVDNTF 52

AVDVFY 52

B
BACKEDUP status 219, 225

backup of project environment 68

batch processing 249

BKMBRLVL parameter 222

BLDEXT1 52

BLDEXT1, build notify user exit 56

BLDINIT 52

BLDINIT, initial build user exit 56

BLDNTF 52

BLDNTF, build notify user exit 56

browse mode 151

Build
by change code 270

build and promote user exit routine,

specifying 56

build function
architecture member 244

build 240

build map
accounting records 168

contents 174

date verification 244

deleting 162

record 172

function summary 236

generating a report 239

modes 239

panel 237

report 240

scopes 238

Build Map
Contents panel 174

Record panel 173

build support
workstation support 299

Build, using 260

build/promote user exit routine
data set 58

example 62

parameters 57

requirements 56

specification 56

© Copyright IBM Corp. 1990, 2005 323

C
CC architecture definitions, writing 111

CCODE
in architecture statements 274

CCSAVE 52

CCSAVE, save change code exit 53

CCVFH, verify change code 53

CCVFY, verify change code exit 51

change code
accounting records 170

deleting 170

input 158

list of 170

report 186

Change Code List panel 170

change code verification routine
creating 53

example 54

specifying 53

change code verification routine,

VERCC 53

cleanup report 188

cleanup, project 264

CMD statement
format 274

restriction 274

use of 268

code
copying 78

parsing 78

translating 78

code, authorization
definition of 8

for concurrent development and

maintenance 11

for controlling
member updates 9

SCLM promotions 9

test versions of members 9

update panel 175

code, change
accounting records 170

deleting 170

input 158

list of 170

report 186

command
DEFINE 159

EXECUTE 178

line 148

primary 148

SETSSI 268

SUBMIT 178

command macros
Save 155

SCREATE 156

SMOVE 156

SPROF 157

SREPLACE 158

command shell, SCLM 249

commands
nesting xvi

comment lines 169

comment statements 169

Compare Type 211, 212

compilation control architecture member
requirement 266

compilation control architecture member

(continued)
use of 266

compile errors 75

compiler
options override 30, 267

used by SCLM 34

compiler processed components 266

components
application and subapplication 269

compiler processed 266

link-edit processed 267

processing conditionally saved 92

concurrent development and

maintenance 11

conditional mode
build 239

promote 244

conditionally saved components 92

configuring the input list translators 100

contention, data 248

control data sets
allocating 19

protecting 24

specifying to project definition 27

control options
ACCT 28

ACCT2 28

change code verification routine

specification 53

DASDUNIT 30

DSNAME 29

EXPACCT 28

MAXLINE 29

MAXVIO 30

OPTOVER 30

user exits 56, 59, 60

VERPDS 29

VERS 29

VERS2 29

VIOUNIT 30

control statements
in accounting records 169

validation 272

controlling member
test versions 9

updates 9

conversion to SCLM
architecture definitions 74

initialization of non-key groups 73

introduction of fixes 75

prerequisites 73

project definitions 73

registration of members 74

converting JCL decks 112

converting JCL to SCLM language

definitions 118

copy
architecture member 282

COPY statement
format 275

use of 275

creating object modules 266

CREF statement
use of 245

cross project support 67

cross-project support 67

cross-reference
report 188

D
DASDUNIT control option 30

data contention 248

data set
accounting 28

allocation 18

attributes 18

concatenations 251

exit output 58, 62

flexible naming 13

naming convention 13

overflow 248

overlay 251

secondary accounting 28

synchronizing 68

data set prefix, unit of work 228

database
accounting records 166

backup 68

historical information 167

organization 142

recovery 68

statistical information 168

database contents utility
Additional Selection Criteria

panel 181

Customization Parameters panel 184

field names 179

report 183

selection criteria
accounting information 181

architecture definition 182

pattern examples 180

tailored data set
definition of 183

example 185

options 184

report 185

using 262

date_check parameter 278

DB2 language definitions
FLM@2ASM 295

FLM@2C 295

FLM@2CO2 295

FLM@2COB 295

FLM@2FRT 295

FLM@2PLO 295

FLM@BD2 295

FLM@BDO 295

FLM@EASM 295

FLM@EC 295

FLM@ECO2 295

FLM@ECOB 295

FLM@EPLO 295

DB2 support 293

CLIST member, creating
format 296

getting started, programmers 296

getting started, project managers 294

recommendations 296

restrictions 293

ddname substitution list
defining new language to SCLM 101

324 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

ddname substitution list (continued)
use of 37

default project definition 3

default type
use of 279

default type, size 101

DEFINE command 159

defining
authorization groups 27

generic architecture members 269

language definition 77

project 3

subapplication 269

translator definition 78

defining a new language
defining a preprocessor 113

determining what information goes

where 101

how to write CC architecture

definitions 111

step-by-step 102

defining an SCLM project,

prerequisites 41

definition, architecture
compilation control 266, 282

converting JCL decks 112

copy 282

creating 74, 272

fields 182

generic 269, 282

high-level 269

kinds of 265

language 272

link-edit control 267, 280

overview 265

sample 279

statement
format 272

optional LIST 267

optional LMAP 268

uses 273

synchronization with 282

understanding 254

use of 265, 266

valid keywords 273

delete from group utility 214

delete mode 216

example report 216

delete notify exit, DELNTF 60

delete user exit routine
data set 62

parameters 61

requirements 60

specification 60

delete verify exit, DELVFY 60

deleting
accounting records 159

build map records 159

change codes 170

cross-reference records 162

data sets 250

from a key group 162

intermediate records 159

members 159

user data entry records 172

DELINIT 52

DELINIT, initial delete exit 60

DELNTF 53

DELNTF, delete notify exit 60

DELVFY 53

DELVFY, delete verify exit 60

dependency
information 176

dependency errors 75

dependency processing
include 288

development activity examples 254

development and maintenance,

concurrent 11

development cycle example 256

development scenario 253

dialog interface
Build (option 4) 236

Edit (option 2) 152

main menu 147

Promote (option 5) 242

Utilities (option 3) 159, 179

View (option 1) 149

virtual region size 145

dialog interface, modifying delete from

group 69

directory blocks 18

disability 313

DOWN command 165

drawdown feature 144, 152

drawing down a member 264

dynamic includes
definition of 99

pointer 99

tracking 99

using 99

E
Easy Cmds option 249

edit
change code support 158

commands
Save 155

SCREATE 156

SMOVE 156

SPROF 157

SREPLACE 158

drawdown feature 152

function 152

panel 153

process 152

records and field names 153

Edit Entry panel 153

Edit Profile Panel 157

Editable types, and package backout 220

editing a member 261

editions, comparing SCLM and ISPF 154

editor, using 258

ensuring synchronization of

hierarchy 282

errors
compile 75

dependency 75

hierarchy 75

establish authorization codes 8

EXECUTE command 178

exit routine
audit version delete 59

exit routine (continued)
build 56

delete 60

example 62

output data sets 58, 62

promote 56

specification 56, 59, 60

EXPACCT control option 28

Export
report example 197

EXPORT
accounting data set creation 21

accounting data set, specifying 28

export accounting data set 21

Option 6 195

utility
overview of 195

use of 195

Utility panel 195

exporting
SCLM data sets 195

extended scope
architecture 183

build 238

promote 244

external compare option 212

F
feature, drawdown 144

flexible data set naming
cross-project support 67

flexible naming 13

FLM@BD2 language definition 295

FLM@BDO output language

definition 295

FLM@WBCC sample language

definition 304

FLM@WBRC sample language

definition 304

FLM@WDUM sample language

definition 304

FLM@WEXE sample language

definition 304

FLM@WICC sample language

definition 304

FLM@WIPF sample language

definition 304

FLM@WLNK sample language

definition 304

FLM@WRC sample language

definition 304

FLM@WTLK sample language

definition 304

FLM00CVE sample exec 129

FLMABEG macro
assembling and linking the project

definition 40

creating project definition 27

FLMAEND macro 27

FLMAGRP macro 27

FLMALLOC macro 309

defining language definitions 36, 37

FLMALTC macro 29

FLMCMD services 249

FLMCOND 37

Index 325

FLMCPYLB macro
defining language definitions 36, 37

FLMGROUP macro 27

FLMINCLS 37

FLMINCLS macro 308

FLMLANGL macro 308

defining language definitions 37

FLMLRB 37

FLMLTWST 299

FLMSYSLB 37

FLMSYSLB macro 38

FLMTCOND 118

FLMTOPTS 37, 118

FLMTRNSL 93, 99

defining language definitions 37, 39

defining translators 78

FLMTRNSL FUNCTN parameter 78

FLMTRNSL macro 308

FLMTYPE macro 27

FLMXFER translator 300

forced mode, build 239

functions
build 236

edit 152

promote 242

that use data sets 15

utilities 159

view 149

G
generic architecture member

restriction 269

use of 269

generic output specifying the generic

architecture member 269

group
defining authorization codes for 27

definition of 141

development layer 142

guidelines for defining 144

key 245

overview 143

promote report 245

non-key 245

overview 143

promote report 245

non-key testing techniques,

primary 6

primary non-key 6

staging layer 143

test 6

verification 153

H
HIER command 165

hierarchical view 142

hierarchy
conversion errors 75

defining 4

description 142

ensuring synchronization 282

group concatenation 142

moving data through 144

promoting data 142

hierarchy (continued)
search order 143

hierarchy navigation 234

hierarchy view 205

unit of work utility 227

high-level architecture member
application modularity 269

controlling dialog software 269

use of 269

history view, version utility 207

I
IDCAMS utility 19

impact assessment techniques 287

IMPORT
Option 7 199

utility
using 199

Utility panel 200

importing
SCLM data 199

SCLM data sets 199

INCL statement
format 272

use of 267

INCLD statement, use of 267, 272

include 288

Include List panel 171

include reference
definition of 171

panel 171

Information Management 129

initial and save change code exit routine
parameters 54

specification 54

initial delete exit, DELINIT 60

INITIAL status 225

input list translators 100

installing sample project data sets 44

INVTARG status 224, 225

ISAPACK flag 219

ISPF-supplied line commands 229

J
JCL

converting to SCLM language

definitions 118

JCL job card, sample 250

job statement 249

JOVIAL 267

jump function xvi

K
key group 143

key groups 143, 245

keyboard 313

keywords
buildmap 175

in architecture member

statements 273

KREF
in architecture statements 275

L
language

architecture member 272

language definitions
DB2 295

defining 34

general 34

macros 36

modify 34

new 77

SCLM-supplied 34

using multiple translators 78

language definitions using the edit

function 157

layer, staging 142, 143

library concatenations 142

library utility
authorization code update 175

browse accounting record 166

browse statistics 168

build map contents 174

build map record 173

change code list 169

include list 171

member selection list 163

options 162

panel 160

understanding 259

update authorization code 175

user data entries 171

Library Utility panel 160

limited scope 238

line commands 148

link project definition 40

LINK statement
format 276

use of 245

link-edit control architecture member
requirement 267

restriction 268

sample 280

use of 267

link-edit processed components 267

linkage editor
creating 267

include 267

multiple 267

override options 268

producing 267

sample 281

specify options 267

SSI field 268

using 267

verification 268

list commands
unit of work 229

work element 231

LIST statement
format 276

use of 267

listing data set
temporary

compiler processed

components 267

link-edit processed

components 268

Listing Type 211

326 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

listings
saving

compiler processed

components 267

link-edit processed

components 268

LKED statement
format 276

use of 268

LMAP statement
format 276

use of 268

load module 8

LOAD statement
format 276

use of 273, 276

load type 8

LOCATE command 165

LookAt message retrieval tool viii

M
macro

FLMABEG 27

FLMAEND 27

FLMAGRP 27

FLMALLOC 309

using 37, 40

FLMALTC 28, 29

FLMATVER 28

FLMCNTRL 28

FLMCOND 37

FLMCPYLB 37, 40

FLMGROUP 27

FLMINCLS 37, 308

FLMLANGL 39, 308

using 37

FLMLRB 37

FLMSYSLB 36, 37

FLMTCOND 37

FLMTOPTS 37

FLMTRNSL 37, 39, 308

FLMTYPE 27

initial 154

user-defined 159

Main Menu panel 147

action bar choices 148

fields 149

maximum report lines 29

maximum VIO limit 30

MAXLINE control option 29

MAXVIO control option 30

member
architecture 265

definition of 141

deleting 159, 162

historical information 177

member selection list
accounting records 165

library utility 163

memory, insufficient 145

message retrieval tool, LookAt viii

messages
ABEND 248

data set 251

ISPF 269

promote 245

migration utility 176, 177

mixed mode 152, 154

MODBKUP status 225

modes
browse 151

build 239

mixed 152, 154

promote 244

modify control options 27

modify language definitions 36

modifying delete from group dialog

interface 69

module, load 8

module, object
creating 266

include 267

sample 282

specify options 267

MOVE command 156

multiple translator usage 78

MVS limitations 143

N
name

language definition 157

profile 154

naming conventions of architecture

members 272

navigation, hierarchy 234

nested commands xvi

NEWBKUP status 225

non-key group 245

definition 143

overview 143

promote report 245

noncomment lines 169

normal scope
build 238

promote 244

Notices 315

NRETRIEV command 145

SCLM considerations 146

number of versions to keep 29

O
OBJ statement

format 277

use of 282

object module
creating 266

include 267

sample 282

specify options 267

object type 8

OBSOLETE status 224, 225

options, control
ACCT 28

ACCT2 28

change code verification routine

specification 53

DASDUNIT 30

DSNAME 29

EXPACCT 28

MAXLINE 29

options, control (continued)
MAXVIO 30

OPTOVER 30

user exits 56, 59, 60

VERPDS 29

VERS 29

VERS2 29

VIOUNIT 30

OPTOVER control option 30

ordering compiler inputs

automatically 267

output
creating generic 269

sending to a data set 251

Output
build outputs 284

default output member names 284

languages of output members 285

multiple build outputs 284

sequential build outputs 284

Output Disposition panel 250

OUTx statement 277

overflow, data set 248

P
package backout utility

backup phase 220

delete package 224

list members in package 223

overview 218

package functions 222

restore command 225

restore package 224

restore phase 221

Package details file 219

cleanup procedure 222

package functions option 222

Package Member Details panel 224

packed data set
editing 155

panels
accounting record 166

accounting record statistics 168

architecture report 189

authorization code update 175

build 237

build map 173

build map contents 174

change code list 170

controlling software for 269

database contents - additional

selection criteria 181

database contents customization

parameters 184

database contents-tailored 184

edit 153

include list 171

library utility 160

main menu 147

member selection list
accounting records 165

migration utility 177

output disposition 250

promote 243

SCLM edit profile 157

user data entries 172

Index 327

panels (continued)
utilities 159

verify batch job information 250

PARM statement
use of 268

PARMstatement
format 277

PARMx statement
format 277

use of 267

parser
invoking 81, 82

user-defined 81

writing 81

parser volume 154

partitioned data set, storing version of

SCLM member 203

patterns for selection criteria 180

personal lists
NRETRIEV command 145

precedence system 182

primary
commands 148

group 144

primary non-key groups 6

printing data sets 250

PRMCOPY 52

PRMCOPY, promote copy user exit 56

PRMEXT1 52

PRMEXT1, promote verify user exit 56

PRMEXT2 52

PRMEXT2, promote copy user exit 56

PRMEXT3 52

PRMEXT3, promote purge user exit 56

PRMINIT 52

PRMINIT, initial promote user exit 56

PRMPRURGE, promote purge user

exit 56

PRMPURGE 52

PRMVFY 52

PRMVFY, promote verify user exit 56

processing
batch 249

errors 248

PROJDEFS data sets
allocation 12

naming convention 12

protecting 24

project
controls 27

converting to SCLM 73

define new languages for 77

defining 3

environment backup and recovery 68

name 27

project cleanup 264

project definition
alternate 3, 25

assembly of 40

data 3

generation of 3

linkage of 40

primary 3

sample of 47

specification 24

project environment
backup and recovery 68

project environment (continued)
definition of 3

generation of 3

protecting 23

project environment, definition 141

project manager scenario 41

project partitioned data sets
allocation of 13

naming convention 13, 29

protecting 24

project-defined line commands 229

PROM statement
format 278

use of 269

Promote
by change code 270

promote function
data contention 248

data set overflow 248

error messages 244, 245

generating a report 244

modes 244

panel 243

processing 244

report 245

scopes 244

Promote function
package backout 222

promoting members 261

propagating applications 288

protect SCLM data sets 27

purge process 248

R
RACF (Resource Access Control

Facility) 23

READ access 23

rebuilding a changed member 261

records
accounting 166

build map 172

user data entries 172

recovery of database 68

REFRESH command 165

report
accounting statistics 187

architecture information 188, 190

build 242

change code 186

cleanup 188

cross-reference information 188

cutoff 190

data set 251

database contents utility 183

examples 183, 190, 242, 248

lines, maximum 29

promote 245

source listing 187

tailored 184, 185

variables 185

report only mode
build 239

promote 244

requirements for workstation build
workstation build requirements 299

Resource Access Control Facility

(RACF) 23

Restored Date/Time field 225

RESTORED status 219, 225

retrieve option 213

REUSEDAY parameter 221

S
sample project

installing the project data sets 44

overview 42

sample project utility, SCLM 251

save change code exit, CCSAVE 53

SAVE command 155

SCLM
defining a new language 101

defining a preprocessor 113

hierarchy 142

installing a project database 41

support for DB2 293

support for workstation builds 299

SCLM command shell 249

SCLM commands 249

SCLM editor, using 258

SCLM Explorer 234

SCLM introduction 141

SCLM language definitions
See language definitions

SCLM sample project utility 251

SCLM services 249

scopes
architecture 183

build 238

promote 244

SCREATE command 156

secondary accounting data set,

specifying 28

security 23

selection criteria 180

services, FLMCMD 249

SETSSI command 268

shortcut keys 313

SINC statement
format 278

required 266

skeletons, ISPF 269

SMOVE command 156

SORT command 165

source listing report 187

source type 8

space computations, accounting data set

definition 21

SPACE parameter 21

SPROF command 157

SREF statement
format 279

SREPLACE command 158

SSI field 268

staging
group 143

layer 143

statistical information
field descriptions 169

panel 168

STORE service
statistical information 168

328 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

subapplication
controlling 269

defining 269

sample 279

subapplication components 269

SUBMIT command 178

subunit scope
architecture 183

build 238

promote 244

supported data 8

suspending an activity xvi

synchronization, architecture

definition 282

synchronizing data sets 68

T
tailored data set

definition of 183

format specification 185

options 184

report 185

sample of 185

temporary listing data set
LIST - compiler processed

components 267

LMAP - link-edit processed

components 268

testing with primary non-key group 6

title
on tailored report 184

Tivoli Information Management
sample user exit 31

Tivoli Information Management for

z/OS 129

tracking dynamic includes 99

translator
invocation 268

type
architecture 8

load 8

object 8

source 8

type, definition of 142

U
unconditional mode

build 239

promote 244

unit of work
data set prefix 228

unit of work utility
hierarchy view 227

member list panel 231

overview 225

UOW
See unit of work utility

UP command 165

UPDATE 23

update authorization code 175

user application data 141

user data entries
accounting records 168, 171

User Data Entries panel 172

user exit routine specification 31

audit version delete 59

build 56

delete 60

example 62

promote 56

user-defined line commands 229

user-defined macros 159

user-defined parsers 81

using the database contents utility 262

utilities function
architecture report 188

audit and version utility 203

database contents utility 178

delete from group utility 214

export utility 195

import utility 199

library utility 160

menu panel 159

migration utility 176

package backout utility 218

tailored data set 185

tailored report 184

unit of work utility 225

V
variables

report 185

VERCC, change code verification exit 51

VERCC, change code verification

routine 53

VERCOUNT parameter 29

verification
authorization code authorization

codes, 177

bypass 278

error processing 244

load module 268

promote processing 248

verification change code 53

verify change code, CCVFY 53

VERPDS control option 29

VERPDS data sets 29

VERRECOV service 208

VERS control option 29

VERS2 control option 29

version of SCLM member, storing in a

PDS 203

version utility
compare member versions 210

external compare option 212

history of changes 207

retrieve option 213

version viewer 208

Versioning and audit tracking 204

versioning partitioned data sets 17, 29

View - Entry panel 150

view function
description 149

VIO limit 30

VIOUNIT control option 30

VSAM
accounting data sets 19

audit control data sets 21

cluster 18

data set 19

VSAM data set
storing audit information 203

VSAM Record Level Sharing 19, 29

VSAMRLS control option
specifying 29

W
work element list 231, 233

workstation build support
relationship with SCLM 299

Index 329

330 z/OS V1R7.0 ISPF SCLM Project Manager’s and Developer’s Guide

Readers’ Comments — We’d Like to Hear from You

Interactive System Productivity Facility (ISPF)

Software Configuration and Library Manager (SCLM) Project Manager’s and Developer’s Guide

z/OS Version 1 Release 7.0

 Publication No. SC34-4817-04

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC34-4817-04

SC34-4817-04

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department J87/D325

555 Bailey Avenue

San Jose, CA

U.S.A. 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/4300-39

Program Number: 5694-A01

Printed in USA

SC34-4817-04

	Contents
	Preface
	Who should use this document
	What is in this document?
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	What's in the z/OS V1R7.0 ISPF library?
	The ISPF User Interface
	Some Terms You Should Know
	How to Navigate in ISPF Using the Action Bar Interface
	Action Bars
	Command Nesting
	Action Bar Choices
	Menu Action Bar Choice
	Utilities Action Bar Choice

	Point-and-Shoot Text Fields
	Function Keys
	Selection Fields

	How to Navigate in ISPF without Using Action Bars

	Part 1. Project Manager's Guide
	Chapter 1. Defining the Project Environment
	Overview of Project Manager Tasks
	Project Definition Data

	Generating a Project Environment
	Step 1: Determine the Project's Hierarchy
	Primary Non-Key Group Testing Techniques

	Step 2: Identify the Types of Data to Support
	Step 3: Establish Authorization Codes
	Using Authorization Codes to Control SCLM Operations
	Allowing Parallel Updates

	Step 4: Allocate the PROJDEFS Data Sets
	Step 5: Allocate the Project Partitioned Data Sets
	Data Set Naming Conventions
	Flexible Naming of Project Partitioned Data Sets
	Number of Data Sets to Allocate
	Determining When Data Set Allocation Is Necessary
	How SCLM Functions Use Data Sets
	Manipulating VSAM Records for Unallocated Data Sets
	Examples of Hierarchies with Unallocated Data Sets

	Versioning Partitioned Data Sets
	Project Partitioned Data Sets
	Space Considerations

	Step 6: Allocate and Create the Control Data Sets
	Create the Accounting Data Sets
	Space Considerations for the Accounting Data Sets

	Create the Export Data Sets
	Create the Audit Control Data Sets
	Space Considerations for the Audit Data Sets

	Step 7: Protect the Project Environment
	PROJDEFS Data Sets
	Project Partitioned Data Sets
	Control Data Sets

	Step 8: Create the Project Definition
	Alternate Project Definitions
	Create the Hierarchy Definition
	Specify the Project Name with FLMABEG
	Define Authorization Groups with FLMAGRP
	Define Types with FLMTYPE
	Define Groups with FLMGROUP
	End the Definition with FLMAEND

	Set the Project Control Options
	Primary Accounting Data Set Specification
	Secondary Accounting Data Set Specification
	Export Accounting Data Set Specification
	Audit Control Data Sets Specification
	VSAM Record Level Sharing (RLS)
	Versioning Partitioned Data Sets Specification
	Project Partitioned Data Set Naming Conventions
	Maximum Lines Per Page
	Number of Versions to Keep
	Translator Option Override
	SCLM Temporary Data Set Allocations
	User Exit Routine Specification
	Example Project Definition

	Define the Language Definitions
	Modifying Example Language Definitions

	Step 9: Assemble and Link the Project Definition
	Assemble and Link Example

	Project Manager Scenario
	Prerequisites for Defining an SCLM Project
	Example Project Overview
	Preparing the Example Project Hierarchy
	Understanding the Sample Project Definition
	Preparing the Example Project Data

	Chapter 2. User Exits
	Specify the Change Code Verification Routine
	Change Code Verification Routine Example

	Specify the Build and Promote User Exit Routines
	Build and Promote User Exit Routine Requirements

	Build and Promote User Exit Output Data Sets
	Specify the Audit Version Delete User Exit Routine
	Audit Version Delete User Exit Routine Requirements

	Specify the Delete User Exit Routine
	Delete User Exit Routine Requirements
	Delete User Exit Output Data Set

	User Exit Routine Example

	Chapter 3. Additional Project Manager Tasks
	Splitting Project VSAM Data Sets
	Backing Up and Recovering the Project Environment
	Synchronizing Accounting Data Sets
	Maintaining Accounting Data Sets
	Modifying the Delete from Group Dialog Interface
	Implementing Package Backout

	Chapter 4. Converting Projects to SCLM
	Prerequisites for Existing Hierarchies
	Create Alternate Project Definitions
	Create Architecture Definitions for the Project
	Register Existing PDS Members with SCLM
	Introducing Fixes to the Converted Hierarchy

	Chapter 5. Language Definition Considerations
	Using Multiple Translators in a Language Definition
	Invoking User-Defined Parsers
	Defining Information Tracked by SCLM
	Writing the Parser
	Telling SCLM How to Invoke Your Parser

	Processing Conditionally Saved Components
	Example of Processing Conditionally Saved Components
	Setting Up the Project Definition

	Specifying the Locations of Included Members
	Example

	Dynamic Include Tracking
	Input List Translators
	Configuring the Input List Translators

	Defining a New Language to SCLM
	Using DDnames and DDname Substitution Lists
	Compiler Options
	Defining a New Language: Step-by-Step

	Showing Users How to Write CC Architecture Definitions
	Convert Your JCL Decks to Architecture Definitions

	Defining a Preprocessor to SCLM
	Passing the Source to the Compiler

	Converting JCL to SCLM Language Definitions
	Before You Begin
	Capabilities and Restrictions
	Converting JCL Cards to SCLM Macro Statements
	Executing Programs
	Conditional Execution
	Sample JCL Conversion

	Chapter 6. Using SCLM and Tivoli Information Management for z/OS
	Required Environment
	Description of User Program Interaction
	Input Parameters
	Option List Format
	Information Management Parameters
	SCLM Parameters

	Program Flow
	Error Processing
	Example

	Chapter 7. Understanding and Using the Customizable Parsers
	The Parsers as Shipped
	Sample Language Definitions
	Parser Error Listings

	Modifying the Parsers
	Adding More Elaborate Parsing Error Messages
	Appending to the Error Listing File

	Compiling the Parsers

	Part 2. Developer's Guide
	Chapter 8. The Software Configuration and Library Manager
	SCLM Project Environment
	User Application Data
	SCLM Hierarchies
	Key/Non-Key Groups
	Moving Data through the Hierarchy

	Chapter 9. Using SCLM Functions
	Name Retrieval with the NRETRIEV command
	SCLM Considerations for NRETRIEV
	SCLM Restrictions
	Stack Management for SCLM

	SCLM Main Menu
	SCLM Main Menu Options
	SCLM Main Menu Action Bar Choices:
	SCLM Main Menu Panel Fields:

	View (Option 1)
	SCLM View - Entry Panel Action Bar Choices
	Reflist
	Refmode
	SCLM
	SCLM View - Entry Panel Fields

	Edit (Option 2)
	SCLM Edit - Entry Panel Fields
	Comparison of SCLM and ISPF Editors
	SCLM Command Macros
	EDIT Command
	Save Command
	SCREATE Command
	SMOVE Command
	SPROF Command
	SCLM Edit Profile Panel Fields
	SREPLACE Command
	Overriding SCLM Command Macros

	Utilities (Option 3)
	Library Utility
	Library Utility Commands
	Member Selection List
	Accounting Record
	Statistics
	Build Map Record
	Build Map Contents
	Authorization Code Update

	Migration Utility
	Database Contents Utility
	Specifying Selection Criteria
	Accounting Information Fields
	Hierarchy search information
	Tailored Output
	Tailored Output Examples

	Architecture Report Utility
	Architecture Report Example

	Export Utility
	Export Report Example

	Import Utility
	Import Report Example

	Audit and Version Utility
	SCLM Version Selection
	SCLM Audit and Version Record
	SCLM Version Compare
	External Compare
	Retrieve

	Delete from Group Utility
	Delete from Group Report Example

	Package Backout Utility
	Backup phase
	Restore phase
	Package Functions
	Package Member Details

	Unit of Work Utility
	Unit of Work Options
	SCLM Unit of Work Data Set Specification panel
	Define Unit of Work list commands
	Define Work Element List commands
	UOW Member List panel
	Work Element List panel

	SCLM Explorer
	FLMUEXTR—the SCLM Explorer batch utility

	Build (Option 4)
	Build Report Example

	Promote (Option 5)
	Promote Report
	Processing Errors
	Data Set Overflow
	Data Contention

	Command (Option 6)
	Easy Cmds (Option 6A)
	Batch Processing
	Output Disposition
	Sample Project Utility (Option 7)

	Chapter 10. Development Scenario
	Understanding the Hierarchy and the SCLM Main Menu
	Understanding the Architecture Definition
	Sample SCLM Development Cycle
	Using the SCLM Editor
	Understanding the Library Utility
	Using Build
	Editing the Member to Correct Errors
	Attempting to Promote a Member before Performing a Build
	Rebuilding the Changed Member
	Using the Database Contents Utility
	Promoting a Member Successfully
	Drawing Down a Promoted Member
	Performing Project Housekeeping Activities

	Chapter 11. Architecture Definition
	Architecture Members
	Kinds of Architecture Members

	Defining Compiler Processed Components
	Compilation Control Architecture Members
	Specifying Source Members

	Defining Link-Edit Processed Components
	SCLM Build and Control Timestamps

	Defining Application and Subapplication Components
	Generic Architecture Members
	Build and Promote by Change Code
	Architecture Statements
	Statement Format
	Statement Uses

	Sample Application Using Architecture Definitions
	Ensuring Synchronization with Architecture Definitions
	Build Outputs
	Multiple Build Outputs
	Sequential Build Outputs
	Default Output Member Names
	Languages of Output Members

	Chapter 12. Managing Complex Projects
	Impact Assessment Techniques
	Dependency Processing
	Propagating Applications to Other Databases

	Part 3. DB2 and Workstation Support
	Chapter 13. SCLM Support for DB2, General Information
	Restrictions
	Information For The Project Manager
	Generating a Project Environment
	Step 1: Determine the Project's Hierarchy
	Step 2: Identify the Types of Data to be Supported
	Step 3: Establish Authorization Codes
	Step 4: Allocate the PROJDEFS Data Sets
	Step 5: Allocate the Project Partitioned Data Sets
	Step 6: Allocate and Create the Control Data Sets
	Step 7: Protect the Project Environment
	Step 8: Create the Project Definition
	Step 9: Assemble and Link the Project Definition

	Information For The Developer
	Developer Recommendations

	Getting Started
	Create DB2 CLIST

	Chapter 14. SCLM Support for Workstation Builds
	Requirements
	Overview of Workstation Build
	Information For The Project Manager
	Project Setup Considerations
	Naming Conventions
	Languages
	What Workstation Tools Will You Use?
	Workstation Information
	How to Find What You Need

	Information For The Developer
	Migrating Applications into SCLM
	Architecture Definition Members for Workstation Applications
	Specifying Options
	Including Outputs From Other Build Steps
	Running Multiple Workstation Commands

	Sample Language Definition
	Workstation Setup
	Directories and File Names

	Multiple Builds on One Workstation

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Glossary of SCLM Terms
	Index
	Readers’ Comments — We'd Like to Hear from You

